Electronic noses using "intelligent" processing techniques

2001 ◽  
pp. 107-116
1998 ◽  
Author(s):  
Katherine A. Byrd ◽  
Bart Smith ◽  
Doug Allen ◽  
Norman Morris ◽  
Charles A. Bjork, Jr. ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3542 ◽  
Author(s):  
Piotr Borowik ◽  
Leszek Adamowicz ◽  
Rafał Tarakowski ◽  
Krzysztof Siwek ◽  
Tomasz Grzywacz

Recent advances in the field of electronic noses (e-noses) have led to new developments in both sensors and feature extraction as well as data processing techniques, providing an increased amount of information. Therefore, feature selection has become essential in the development of e-nose applications. Sophisticated computation techniques can be applied for solving the old problem of sensor number optimization and feature selections. In this way, one can find an optimal application-specific sensor array and reduce the potential cost associated with designing new e-nose devices. In this paper, we examine a procedure to extract and select modeling features for optimal e-nose performance. The usefulness of this approach is demonstrated in detail. We calculated the model’s performance using cross-validation with the standard leave-one-group-out and group shuffle validation methods. Our analysis of wine spoilage data from the sensor array shows when a transient sensor response is considered, both from gas adsorption and desorption phases, it is possible to obtain a reasonable level of odor detection even with data coming from a single sensor. This requires adequate extraction of modeling features and then selection of features used in the final model.


Author(s):  
Marta Padilla ◽  
Jordi Fonollosa ◽  
Santiago Marco

Electronic noses or artificial olfaction systems based on chemical gas sensors present lack of robustness, a problem that is mainly technological and requires more research to improve fabrication processes and develop new technologies. However, statistical signal processing can help to mathematically reduce those unwanted effects on the sensors responses before the prediction step. In this chapter, the authors explore the concept of robustness in electronic nose instruments and the use of several multivariate signal processing techniques to deal with two specific problems related to such lack of robustness: time instability (drift) and the detection of a possible faulty sensor in the array. In particular, three different techniques that deal with drift problems are reviewed. These techniques address drift by correction of unwanted variance, by taking advantage of the characteristics of a three-way data arrangement, or by using a blind strategy to extract information with chemical meaning. Finally, a method based on principal component analysis is presented for fault detection, faulty sensor identification, and correction of a fault in a sensor array.


2013 ◽  
Vol 119 ◽  
pp. 1-2 ◽  
Author(s):  
Jinhui Tang ◽  
Wei Bian ◽  
Nenghai Yu ◽  
Yu-Jin Zhang

Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
S. Hasegawa ◽  
T. Kawasaki ◽  
J. Endo ◽  
M. Futamoto ◽  
A. Tonomura

Interference electron microscopy enables us to record the phase distribution of an electron wave on a hologram. The distribution is visualized as a fringe pattern in a micrograph by optical reconstruction. The phase is affected by electromagnetic potentials; scalar and vector potentials. Therefore, the electric and magnetic field can be reduced from the recorded phase. This study analyzes a leakage magnetic field from CoCr perpendicular magnetic recording media. Since one contour fringe interval corresponds to a magnetic flux of Φo(=h/e=4x10-15Wb), we can quantitatively measure the field by counting the number of finges. Moreover, by using phase-difference amplification techniques, the sensitivity for magnetic field detection can be improved by a factor of 30, which allows the drawing of a Φo/30 fringe. This sensitivity, however, is insufficient for quantitative analysis of very weak magnetic fields such as high-density magnetic recordings. For this reason we have adopted “fringe scanning interferometry” using digital image processing techniques at the optical reconstruction stage. This method enables us to obtain subfringe information recorded in the interference pattern.


Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Sign in / Sign up

Export Citation Format

Share Document