Linear and nonlinear seismic response of prefabricated combined (frames-tall shear walls) system of construction

2013 ◽  
Vol 40 (9) ◽  
pp. 875-886 ◽  
Author(s):  
Jagmohan Humar ◽  
Marjan Popovski

The roof framing in single-storey buildings with large foot prints, generally used for commercial, educational, or institutional purposes, often consists of a flexible steel deck or wood panel diaphragm. Resistance to seismic lateral loads is provided by steel bracings, masonry shear walls, concrete shear walls, wood panel shear walls, or cold formed wall systems. The response of such buildings to seismic loads is strongly affected by the flexibility of the roof diaphragm. Diaphragm flexibility alters the manner in which the inertia forces, shears, and bending moments are distributed along the length of the diaphragm. In addition, it causes a significant increase in the ductility demand on the lateral load resisting system that is expected to be strained into the inelastic range under the design earthquake. Results of a study on the linear and nonlinear seismic response of buildings with flexible diaphragms are presented.


2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


2021 ◽  
Vol 32 (5) ◽  
pp. 1174-1189
Author(s):  
Hongyun Jiao ◽  
Xiuli Du ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Xu Zhao ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 661-677 ◽  
Author(s):  
Toufiq Ouzandja ◽  
Mohamed Hadid

Purpose This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu. Design/methodology/approach The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves. Findings Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear. Originality/value This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).


2010 ◽  
Vol 66 (1) ◽  
pp. 31-36
Author(s):  
Yasumiki YAMAMOTO ◽  
Hisamitsu HANNO ◽  
Yozo FUJINO ◽  
Masaaki YABE

Sign in / Sign up

Export Citation Format

Share Document