Synchronization Control of Parallel Robotic Manipulators

2021 ◽  
Author(s):  
Vangjel Pano

Developed in this thesis is a new control law focusing on the improvement of contour tracking of robotic manipulators. The new control scheme is a hybrid controller based on position domain control (PDC) and position synchronization control (PSC). On PDC, the system’s dynamics are transformed from time domain to position domain via a one-to-one mapping and the position of the master axis motion is used as reference instead of time. The elimination of the reference motion from the control input improves contouring performance relative to time domain controllers. Conversely, PSC seeks to reduce the error of the systems by diminishing the synchronization error between each agent of the system. The new control law utilizes the aforementioned techniques to maximize the contour performance. The Lyapunov method was used to prove the proposed controller’s stability. The new control law was compared to existing control schemes via simulations of linear and nonlinear contours, and was shown to provide good tracking and contouring performances.


Author(s):  
P. R. Ouyang ◽  
V. Pano

In this paper, a new position domain synchronization control (PDSC) law is proposed for contour control of multi-DOF nonlinear robotic manipulators with the main goal of improving contour tracking performance. The robotic manipulator is treated as a master-slave motion system, where the position of the master motion is used as an independent reference via equidistant sampling, and the slave motions are described as functions of the master motion. To build this relationship, the dynamics of the original system is transformed from time domain to position domain. The new control introduces synchronization and coupled errors in the control law to further coordinate the master and slave motions. Stability analysis is performed based on the Lyapunov method for the proposed PDSC, and simulations are conducted to verify the effectiveness of the developed control system.


2021 ◽  
Author(s):  
Vangjel Pano

Developed in this thesis is a new control law focusing on the improvement of contour tracking of robotic manipulators. The new control scheme is a hybrid controller based on position domain control (PDC) and position synchronization control (PSC). On PDC, the system’s dynamics are transformed from time domain to position domain via a one-to-one mapping and the position of the master axis motion is used as reference instead of time. The elimination of the reference motion from the control input improves contouring performance relative to time domain controllers. Conversely, PSC seeks to reduce the error of the systems by diminishing the synchronization error between each agent of the system. The new control law utilizes the aforementioned techniques to maximize the contour performance. The Lyapunov method was used to prove the proposed controller’s stability. The new control law was compared to existing control schemes via simulations of linear and nonlinear contours, and was shown to provide good tracking and contouring performances.


Author(s):  
Thiago Neves Cunha ◽  
Guilherme Boulhosa Rodamilans ◽  
Emilia Villani ◽  
Luis Gonzaga Trabasso ◽  
Wesley Oliveira

2005 ◽  
Vol 71 (711) ◽  
pp. 3146-3151
Author(s):  
Yoshikuni ISHIKAWA ◽  
Tielong SHEN ◽  
Xiaofeng YANG ◽  
Katsutoshi TAMURA

Sign in / Sign up

Export Citation Format

Share Document