Basic 3DTV Approaches for Content Capture and Mastering

Keyword(s):  
2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Reinaldo Viana de Sousa ◽  
Tatiana Martins Thomaz ◽  
Sandra Monteiro Borges Florsheim ◽  
Israel Luiz de Lima ◽  
Eduardo Luiz Longui ◽  
...  

Carbon sequestration involves the removal of CO2 from the atmosphere, aiming to reduce the greenhouse effect. Wood basic density is a direct part of this process. We selected five trees in each of the following species to determine wood basic density and quantify carbon, both sequestered and fixed, for 10 years: Alchornea sidifolia, Ceiba speciosa, Gallesia integrifolia, Guazuma ulmifolia, Inga marginata, Maclura tinctoria, and Prunus cerasoides. The study was conducted in the Commemorative Arboretum of 500 Years of Brazil in Alberto Löfgren State Park, São Paulo. Using maximum moisture content capture of CO, we studied variations of wood density and CO2, both fixed and sequestered, by an individual tree in the same species and between species. Values of fixed and sequestered CO2 showed variations among species with a high dependence on wood density such that trees with higher amounts of CO2, both fixed and abducted, were also trees that showed the highest increment both in height and diameter (DBH). Based on these metrics, G. ulmifolia, I. marginata, M. tinctoria, and P. cerasoides showed the most potential to sequester carbon. Our calculations showed that planting these four species would result in the sequestration of around 30 tons of carbon per hectare.


Author(s):  
Nalin Sharda

This chapter presents an overview of multimedia information transmission over Wireless Sensor Networks (WSNs). These WSNs have evolved since the 1980s and their evolution can be divided into three generations. Wireless Multimedia Sensor Networks (WMSNs) have become viable in recent years with the availability of inexpensive video cameras, increase in procession power and memory capacity of nodes, and better power sources and their management. Multimedia information requires higher bandwidth and lower delay and delay jitter to provide the required Quality of Service (QoS) for multimedia transmission. Further research is being conducted, and can be taken even further, in the areas of advanced algorithms for content capture, compression and communication of multimedia information over WSNs.


2014 ◽  
Vol 917 ◽  
pp. 342-349
Author(s):  
Nadia Isabella Mohd Noor ◽  
Usama Eldemerdash ◽  
Mohd Shariff Azmi

.Carbon dioxide (CO2) commonly exists as undesirable component in natural gas streams. The continuous growing of the global demand makes it necessary to overcome the high CO2content obstacle of stranded reserves. A wide variety of acid gas removal technologies have been developed, including chemical and physical absorption processes but none of them can combine the high efficiency and economic energy consumption. Each process has its own advantages and disadvantages. Using of adsorbents increasingly being selected for newer projects, especially for applications that have large flow, high CO2content and located in remote locations such as offshore where compact and highly effective technology is required. This review highlights the importance of adsorbent modification on CO2removal from natural gas reserve at high pressure and temperature using physical adsorbents such as zeolite and molecular sieve. Then, the focus is turned on the adsorbents chemical modification using organic amines to improve the adsorption efficiency towards CO2.


2009 ◽  
pp. 992-996
Author(s):  
Spiridoula Koukia ◽  
Maria Rigou ◽  
Spiros Sirmakessis

The contribution of context information to content management is of great importance. The increase of storage capacity in mobile devices gives users the possibility to maintain large amounts of content to their phones. As a result, this amount of content is increasing at a high rate. Users are able to store a huge variety of content such as contacts, text messages, ring tones, logos, calendar events, and textual notes. Furthermore, the development of novel applications has created new types of content, which include images, videos, MMS (multi-media messaging), e-mail, music, play lists, audio clips, bookmarks, news and weather, chat, niche information services, travel and entertainment information, driving instructions, banking, and shopping (Schilit & Theimer, 1994; Schilit, Adams, & Want, 1994; Brown, 1996; Brown, Bovey, & Chen, 1997). The fact that users should be able to store the content on their mobile phone and find the content they need without much effort results in the requirement of managing the content by organizing and annotating it. The purpose of information management is to aid users by offering a safe and easy way of retrieving the relevant content automatically, to minimize their effort and maximize their benefit (Sorvari et al., 2004). The increasing amount of stored content in mobile devices and the limitations of physical mobile phone user interfaces introduce a usability challenge in content management. The physical mobile phone user interface will not change considerably. The physical display sizes will not increase since in the mobile devices the display already covers a large part of the surface area. Text input speed will not change much, as keyboard-based text input methods have been the most efficient way to reduce slowness. While information is necessary for many applications, the human brain is limited in terms of how much information it can process at one time. The problem of information management is more complex in mobile environments (Campbell & Tarasewich, 2004). One way to reduce information overload and enhance content management is through the use of context metadata. Context metadata is information that describes the context in which a content item was created or received and can be used to aid users in searching, retrieving, and organizing the relevant content automatically. Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and the applications themselves (Dey, 2001). Some types of context are the physical context, such as time, location, and date; the social context, such as social group, friends, work, and home; and the mental context, which includes users’ activities and feelings (Ryan, Pascoe, & Morse, 1997; Dey, Abowd, & Wood, 1998; Lucas, 2001). By organizing and annotating the content, we develop a new way of managing it, while content management features are created to face efficiently the usability challenge. Context metadata helps the user find the content he needs by enabling single and multi-criteria searches (e.g., find photos taken in Paris last year), example-based searches (e.g., find all the video clips recorded in the same location as the selected video clip), and automatic content organization for efficient browsing (e.g., location-based content view, where the content is arranged hierarchically based on the content capture location and information about the hierarchical relationships of different locations).


Author(s):  
Steven Shaw ◽  
Vivek Venkatesh

The capabilities of the current generation of course management systems (CMS) are limited; even market-leading platforms are arguably inadequate for the needs of learners, instructors, and educational administrators. This chapter reviews the shortcomings of CMS and identifies problems associated with content capture, content re-use, search and retrieval, document management, IP management, connectivity, support for open standards, and support for learning strategies. We argue that the future lies in the adoption and adaptation of existing learning content management systems (LCMS). LCMS have evolved primarily in the corporate market and are rapidly developing into highly flexible applications that can implement a wide variety of learning and knowledge management strategies.


Sign in / Sign up

Export Citation Format

Share Document