Integral bridge design solutions for Italian highway overpasses

Author(s):  
L Torricelli ◽  
A Marchiondelli ◽  
R Pefano ◽  
R Stucchi
Author(s):  
Jessica Sandberg ◽  
Luca Magnino ◽  
Paul Nowak ◽  
Michael Wiechecki ◽  
Indrasenan Thusyanthan

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ilaria Venanzi ◽  
Riccardo Castellani ◽  
Laura Ierimonti ◽  
Filippo Ubertini

Stakeholders of civil infrastructures have to usually choose among several design alternatives in order to select a final design representing the best trade-off between safety and economy, in a life-cycle perspective. In this framework, the paper proposes an automated procedure for the estimation of life-cycle repair costs of different bridge design solutions. The procedure provides the levels of safety locally guaranteed by the selected design solution and the related total life-cycle cost. The method is based on the finite element modeling of the bridge and uses design traffic models as suggested by international technical standards. Both the global behavior and the transversal cross section of the bridge are analyzed in order to provide local reliability indexes. Several parameters involved in the design, such as geometry and loads and materials’ characteristics, are considered as uncertain. Degradation models are adopted for steel carpentry and rebars. The application of the procedure to a road bridge case study shows its potential in providing local safety levels for different limit states over the entire lifetime of the bridge and the life-cycle cost of the infrastructure, highlighting the importance of the local character of the life-cycle cost analysis.


2021 ◽  
Vol 11 (15) ◽  
pp. 7131
Author(s):  
Lila Dhar Sigdel ◽  
Ahmed Al-Qarawi ◽  
Chin Jian Leo ◽  
Samanthika Liyanapathirana ◽  
Pan Hu

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. The significance of an integral bridge design is that it avoids durability and recurring maintenance issues with bridge joints, and maybe bearings, which are prevalent in traditional bridges. Integral bridges are less costly to construct. They require less maintenance and therefore cause less traffic disruptions that incur socio-economic costs. As a consequence, integral bridges are becoming the first choice of bridge design for short-to-medium length bridges in many countries, including the UK, USA, Europe, Australia, New Zealand and many other Asian countries. However, integral bridge designs are not without challenges: issues that concern concrete creep, shrinkage, temperature effects, bridge skew, structural constraints, as well as soil–structure interactions are amplified in integral bridges. The increased cyclic soil–structure interactions between the bridge structure and soil will lead to adverse soil ratcheting and settlement bump at the bridge approach. If movements from bridge superstructures were also transferred to pile-supported substructures, there is a risk that the pile–soil interactions may lead to pile fatigue failure. These issues complicate the geotechnical aspects of integral bridges. The aim of this paper is to present a comprehensive review of current geotechnical design practices and the amelioration of soil–structure interactions of integral bridges.


2020 ◽  
Vol 10 (1) ◽  
pp. 499-505
Author(s):  
Andrzej Helowicz

AbstractThis paper describes a small single-span integral bridge made of in-situ concrete. The bridge was designed by the author and built on the M9 motorway between the towns of Waterford and Kilcullen in Ireland. Selected parts of the bridge design are presented. First the principles of modelling and designing integral bridges and culverts are explained. Then the considered bridge’s design is described. The advantages and disadvantages of such structures are discussed. The focus is on the design, construction, cost and in-service behaviour of small integral bridges and culverts. In Conclusions the author shares his knowledge and experience relating to the design of small integral bridges and culverts and puts forward recommendations as to further research on this type of structures in Poland.


2020 ◽  
pp. 34-42
Author(s):  
Nikolay I. Shchepetkov ◽  
Svetlana B. Kapeleva ◽  
Denis V. Bugaev ◽  
Gregory S. Matovnikov ◽  
Anna S. Kostareva

The article provides a comprehensive analysis of outdoor lighting in the central part of Tyumen (with consideration of conducted field observations) and prospects of its development on the basis of the general plan of illumination of the central part of the city being under design. Main provisions of this general plan as well as methodological principles and assessment criteria of design solutions illustrat-ed by photographs, schemes and visualisations of the illuminated objects are described.


2018 ◽  
pp. 29-36
Author(s):  
Nikolai I. Shepetkov ◽  
George N. Cherkasov ◽  
Vladimir A. Novikov

This paper considers the fundamental problem of artificial lighting in various types and scales of industrial facilities, focusing on exterior lighting design solutions. There is a lack of interest from investors, customers and society in high­quality lighting design for industrial facilities in Russia, which in many cities are very imaginative structures, practically unused in the evening. Architectural lighting of various types of installations is illustrated with photographs. The purpose of the article is to draw attention to the aesthetic value of industrial structures, provided not only by the architectural, but also by a welldesigned lighting solution.


Sign in / Sign up

Export Citation Format

Share Document