Molecular Basis of Cytokinin Action during Root Development

Plant Roots ◽  
2013 ◽  
pp. 224-235
Plant Roots ◽  
2013 ◽  
pp. 14-1-14-12
Author(s):  
Serena Perilli ◽  
Laila Moubayidin ◽  
Sabrina Sabatini

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1257
Author(s):  
Jinzhu Li ◽  
Bingxin Wang ◽  
Xinxing Zhu ◽  
Rong Li ◽  
Jing Fu ◽  
...  

Lateral root development is a complex process regulated by numerous factors. An important role for sugar in lateral root development has been known for a while, but the underlying molecular basis still remains unclear. In this study, we first showed that WOX7, a sugar-inducible negative regulator of lateral root development, acts downstream of the glucose sensor HXK1. Using a transgenic line homozygous for a transgene expressing GFP under the control of the WOX7 promoter, we next performed a genetic screen to identify additional genes in this development pathway. A number of mutants with altered level of WOX7 expression were recovered, and two with increased WOX7 expression, named ewe-1 and ewe-2 (for Enhanced WOX7 Expression), were further characterized. Both mutants manifest delayed lateral root development, and genetic analysis indicates that single recessive mutations are responsible for the observed phenotypes. The mutations were then located to similar regions on chromosome 2 by marker-assisted analyses, and candidate genes were identified through whole genome sequencing. The significance and limitations of this work are discussed.


Author(s):  
Roger A. Aeschbacher ◽  
John W. Schiefelbein ◽  
Philip N. Benfey

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Roland Akakpo ◽  
Nora Scarcelli ◽  
Hana Chaïr ◽  
Alexandre Dansi ◽  
Gustave Djedatin ◽  
...  

Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
Darcy B. Kelley ◽  
Martha L. Tobias ◽  
Mark Ellisman

Brain and muscle are sexually differentiated tissues in which masculinization is controlled by the secretion of androgens from the testes. Sensitivity to androgen is conferred by the expression of an intracellular protein, the androgen receptor. A central problem of sexual differentiation is thus to understand the cellular and molecular basis of androgen action. We do not understand how hormone occupancy of a receptor translates into an alteration in the developmental program of the target cell. Our studies on sexual differentiation of brain and muscle in Xenopus laevis are designed to explore the molecular basis of androgen induced sexual differentiation by examining how this hormone controls the masculinization of brain and muscle targets.Our approach to this problem has focused on a highly androgen sensitive, sexually dimorphic neuromuscular system: laryngeal muscles and motor neurons of the clawed frog, Xenopus laevis. We have been studying sex differences at a synapse, the laryngeal neuromuscular junction, which mediates sexually dimorphic vocal behavior in Xenopus laevis frogs.


1998 ◽  
Vol 33 ◽  
pp. 65-77 ◽  
Author(s):  
Dominique Massotte ◽  
Brigitte L. Kieffer
Keyword(s):  

2011 ◽  
Vol 81 (4) ◽  
pp. 238-239 ◽  
Author(s):  
Manfred Eggersdorfer ◽  
Paul Walter

Nutrition is important for human health in all stages of life - from conception to old age. Today we know much more about the molecular basis of nutrition. Most importantly, we have learnt that micronutrients, among other factors, interact with genes, and new science is increasingly providing more tools to clarify this interrelation between health and nutrition. Sufficient intake of vitamins is essential to achieve maximum health benefit. It is well established that in developing countries, millions of people still suffer from micronutrient deficiencies. However, it is far less recognized that we face micronutrient insufficiencies also in developed countries.


Sign in / Sign up

Export Citation Format

Share Document