Uncertainty analysis of FE model updating results through a Bayesian inference scheme

Author(s):  
I Behmanesh ◽  
B Moaveni
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3057 ◽  
Author(s):  
Parisa Asadollahi ◽  
Yong Huang ◽  
Jian Li

We focus on a Bayesian inference framework for finite element (FE) model updating of a long-span cable-stayed bridge using long-term monitoring data collected from a wireless sensor network (WSN). A robust Bayesian inference method is proposed which marginalizes the prediction-error precisions and applies Transitional Markov Chain Monte Carlo (TMCMC) algorithm. The proposed marginalizing error precision is compared with other two treatments of prediction-error precisions, including the constant error precisions and updating error precisions through theoretical analysis and numerical investigation based on a bridge FE model. TMCMC is employed to draw samples from the posterior probability density function (PDF) of the structural model parameters and the uncertain prediction-error precision parameters if required. It is found that the proposed Bayesian inference method with prediction-error precisions marginalized as “nuisance” parameters produces an FE model with more accurate posterior uncertainty quantification and robust modal property prediction. When applying the identified modal parameters from acceleration data collected during a one-year period from the large-scale WSN on the bridge, we choose two candidate model classes using different parameter grouping based on the clustering results from a sensitivity analysis and apply Bayes’ Theorem at the model class level. By implementing the TMCMC sampler, both the posterior distributions of the structural model parameters and the plausibility of the two model classes are characterized given the real data. Computation of the posterior probabilities over the candidate model classes provides a procedure for Bayesian model class assessment, where the computation automatically implements Bayesian Ockham razor that trades off between data-fitting and model complexity, which penalizes model classes that “over-fit” the data. The results of FE model updating and assessment based on the real data using the proposed method show that the updated FE model can successfully predict modal properties of the structural system with high accuracy.


2021 ◽  
Vol 11 (4) ◽  
pp. 1622
Author(s):  
Gun Park ◽  
Ki-Nam Hong ◽  
Hyungchul Yoon

Structural members can be damaged from earthquakes or deterioration. The finite element (FE) model of a structure should be updated to reflect the damage conditions. If the stiffness reduction is ignored, the analysis results will be unreliable. Conventional FE model updating techniques measure the structure response with accelerometers to update the FE model. However, accelerometers can measure the response only where the sensor is installed. This paper introduces a new computer-vision based method for structural FE model updating using genetic algorithm. The system measures the displacement of the structure using seven different object tracking algorithms, and optimizes the structural parameters using genetic algorithm. To validate the performance, a lab-scale test with a three-story building was conducted. The displacement of each story of the building was measured before and after reducing the stiffness of one column. Genetic algorithm automatically optimized the non-damaged state of the FE model to the damaged state. The proposed method successfully updated the FE model to the damaged state. The proposed method is expected to reduce the time and cost of FE model updating.


Author(s):  
D. V. Nehete ◽  
S. V. Modak ◽  
K. Gupta

Finite element (FE) model updating is now recognized as an effective approach to reduce modeling inaccuracies present in an FE model. FE model updating has been researched and studied well for updating FE models of purely structural dynamic systems. However there exists another class of systems known as vibro-acoustics in which acoustic response is generated in a medium due to the vibration of enclosing structure. Such systems are commonly found in aerospace, automotive and other transportation applications. Vibro-acoustic FE modeling is essential for sound acoustic design of these systems. Vibro-acoustic system, in contrast to purely structural system, has not received sufficient attention from FE model updating perspective and hence forms the topic of present paper. In the present paper, a method for finite element model updating of coupled structural acoustic model, constituted as a problem of constrained optimization, is proposed. An objective function quantifying error in the coupled natural frequencies and mode shapes is minimized to estimate the chosen uncertain parameters of the system. The effectiveness of the proposed method is validated through a numerical study on a 3D rectangular cavity attached to a flexible panel. The material property and the stiffness of joints between the panel and rectangular cavity are used as updating parameters. Robustness of the proposed method under presence of noise is investigated. It is seen that the method is not only able to obtain a close match between FE model and corresponding ‘measured’ vibro-acoustic characteristics but is also able to estimate the correction factors to the updating parameters with reasonable accuracy.


2002 ◽  
Vol 80 (25) ◽  
pp. 1869-1879 ◽  
Author(s):  
Anne Teughels ◽  
Johan Maeck ◽  
Guido De Roeck

Sign in / Sign up

Export Citation Format

Share Document