Study on upstream water quality boundary and local pollution loads of Suzhou Creek based on mathematical model

Author(s):  
Xu Zu-xin ◽  
Liao Zhen-liang ◽  
Zhang Jin-ping
2021 ◽  
Author(s):  
Xianzhong Zeng ◽  
Shouning Hao

The calculation of the contribution rates of the upstream and downstream administrative regions to water pollution of trans-boundary rivers is an important research subject. In this paper, a method based on the water quality mathematical model was proposed, which includes three steps: (1) Establishment of a model for a trans-boundary river; (2) Analysis of the pollution impact on the water quality at the control sections of the trans-boundary river; and (3) Calculation of the contribution rates to water pollution of the trans-boundary river. Taking Zhaosutai River, a trans-boundary river flowing through Jilin and Liaoning Provinces, as the study case, the contribution rates of these two provinces to water pollution of the river were determined by this method. The results showed that for the COD concentrations in the Control Sections of Laoqujiadian, Qijiazi and Dasijiazi of the main stream in January 2017, the contribution rates of the upstream pollution loads we 96.2%, 81.0% and 70.5%, respectively. The method of calculating the contribution rates to water pollution of trans-boundary rivers based on the mathematical water quality model proposed in this paper quantitatively can be used to identify the responsibilities of upstream and downstream administrative regions for water pollution of trans-boundary rivers.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


2011 ◽  
Vol 347-353 ◽  
pp. 1902-1905
Author(s):  
Hua Li You

Water is the basis of natural resources and strategic economic resources.Deteriorated water environment of streams in Shenzhen city could have a great impact on ecological safety, people's health,and economic development.Based on the data of field observation and Remote sensing (RS) image,integrated analysis of the water degradation causes,and the changes of biochemical oxygen demand in five days(BOD5)concentration by mathematical model were carried out,which is on basis of percentage of waste water disposal,fresh water transformation,and harbor excavation, respectively.The results show that degradation causes of water quality were resulted from waste water discharge, harbor construction,and ecological environment damage, which could lead to slowly water exchange. Accordingly,the pollution can be easily to store in the bay,which result in water quality changes.The most important improved countermeasure is the control of waste water, which could be had a great effectiveness to decrease pollution.In addition, fresh water must be supplied after polluted water was cut off,which can be better improvement for water quality.This would be extreme improvement for hydrological dynamics due to 15m harbor excavation,which can significantly reduce BOD5 concentration.The innovation points of this paper is to mathematical model,which is based on the basis of qualitative analysis.


Author(s):  
Le Ngoc Tuan ◽  
Tao Manh Quan ◽  
Tran Thi Thuy ◽  
Doan Thanh Huy ◽  
Tran Xuan Hoang

The carrying capacity of receiving water bodies is one of the important data for water quality management, pollution source control towards harmonizing with the economic development and environment protection. Therefore, this research aimed atevaluating the carrying capacity of receiving water bodies in the south of Binh Duong province up to 2030. 06 key water quality indicators (COD, BOD, TSS, PO43--P, NO3--N, NH4+-N) were exmained with 02 wastewater treatment scenarios. Results showed the investigated area hardly had carrying capacity for NH4+-N and PO43--P, followed by TSS, BOD, and COD. In case of improving wastewater treatment status till 2030, the carrying capacity of receiving water bodies would be increased, but not significant. The carrying capacity of several basins needs to be paid special attention are: Suoi Con 1 basin (BOD, COD, NH4+-N), Suoi Cai basin (BOD, TSS and NH4+-N), the upstream of Cay Bang – Cau Dinh basin (BOD, COD, TSS, NH4+-N), the upstream of Chom Sao – Rach Bung basin (05 parameters, excepting NO3--N), the upstream of Binh Hoa – Vinh Binh basin (BOD, COD, PO43--P, NH4+-N). These findings are an important basis for formulating strategies and proposing measures for local pollution source control and surface water management.  


2020 ◽  
Vol 81 (8) ◽  
pp. 1606-1614 ◽  
Author(s):  
M. S. Nyirenda ◽  
T. T. Tanyimboh

Abstract The use of water quality indices to aggregate pollution loads in rivers has been widely studied, with researchers using various sub-indices and aggregation methods. These have been used to combine various quality variables at a sampling point in a river into an overall water quality index to compare the state of water quality in different river reaches. Service reservoirs in a water distribution network, like rivers, have complex mixing mechanisms, are subjected to various water quality variables and are variably sized and sited. Water quality indices and the relevant sub-indices are formulated here and applied to service reservoirs within a water distribution network. This is in an attempt to compare holistically the performance of service reservoirs in solutions of optimisation algorithms with regards to water quality.


2016 ◽  
Vol 74 (6) ◽  
pp. 1376-1385 ◽  
Author(s):  
Mojtaba Shourian ◽  
Ali Moridi ◽  
Mohammad Kaveh

The purpose of this study is to survey the thermal regime and eutrophication states in Ilam reservoir in Iran as the case study. For this purpose and to find solutions for improving the water's quality in the reservoir, two general strategies for reducing the entering pollution loads and water depletions from the reservoir's outlets were analyzed by use of the CE-QUAL-W2 model. Results of the simulation of the present situation show the existence of thermal stratification during summer, which results in the qualitative stratification in the reservoir. According to the qualitative criteria, the Ilam reservoir's state is between mesotrophic and eutrophic. Results of the scenarios of reduction of the nutrients show that in the scenario of 50% reduction of the phosphorus and nitrogen loads into the reservoir, the state of the reservoir would recover from eutrophic to semi-eutrophic. Also, release of water from the reservoir during September, October and November would cause the restoration of the quality of water in the reservoir. To avoid the occurrence of critical eutrophication in the reservoir, reducing the ponding time in the reservoir by fast depletion, preventing entrance of the upstream villages' sewage and agricultural drained waters, which are sources of nitrate and phosphate contamination into the rivers, and also management of the usage of agricultural fertilizers have been suggested.


Sign in / Sign up

Export Citation Format

Share Document