Instantaneous Three-Dimensional Visualization of Concentration Distributions in Turbulent Flows with a Single Laser A Hoffmann, F Zimmermann, C Schulz

2016 ◽  
pp. 55-62
Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1079
Author(s):  
Lena Mahl ◽  
Patrick Heneka ◽  
Martin Henning ◽  
Roman B. Weichert

The efficiency of a fishway is determined by the ability of immigrating fish to follow its attraction flow (i.e., its jet) to locate and enter the fishway entrance. The hydraulic characteristics of fishway entrance jets can be simplified using findings from widely investigated surface jets produced by shaped nozzles. However, the effect of the different boundary conditions of fishway entrance jets (characterized by vertical entrance slots) compared to nozzle jets must be considered. We investigate the downstream propagation of attraction jets from the vertical slot of a fishway entrance into a quiescent tailrace, considering the following boundary conditions not considered for nozzle jets: (1) slot geometry, (2) turbulence characteristics of the approach flow to the slot, and (3) presence of a lateral wall downstream of the slot. We quantify the effect of these boundary conditions using three-dimensional hydrodynamic-numeric flow simulations with DES and RANS turbulence models and a volume-of-fluid method (VoF) to simulate the free water surface. In addition, we compare jet propagation with existing analytical methods for describing jet propagations from nozzles. We show that a turbulent and inhomogeneous approach flow towards a vertical slot reduces the propagation length of the slot jet in the tailrace due to increased lateral spreading compared to that of a jet produced by a shaped nozzle. An additional lateral wall in the tailrace reduces lateral spreading and significantly increases the propagation length. For highly turbulent flows at fishway entrances, the RANS model tends to overestimate the jet propagation compared to the transient DES model.


1995 ◽  
Vol 117 (1) ◽  
pp. 142-153 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore

Osborne Reynolds’ developments of the concepts of Reynolds averaging, turbulence stresses, and equations for mean kinetic energy and turbulence energy are viewed in the light of 100 years of subsequent flow research. Attempts to use the Reynolds energy-balance method to calculate the lower critical Reynolds number for pipe and channel flows are reviewed. The modern use of turbulence-energy methods for boundary layer transition modeling is discussed, and a current European Working Group effort to evaluate and develop such methods is described. The possibility of applying these methods to calculate transition in pipe, channel, and sink flows is demonstrated using a one-equation, q-L, turbulence model. Recent work using the equation for the kinetic energy of mean motion to gain understanding of loss production mechanisms in three-dimensional turbulent flows is also discussed.


Author(s):  
Yong-Wen Wu ◽  
Jia Wu

The oscillatory flow in a baffled tube reactor provides a significant enhancement of radial transfer of momentum, heat and mass and a good control of axial back mixing at a wide range of net flow rate. But little has been known about reliable details of the three-dimensional structure of flow field in this kind of flow because most published studies in the area were based on the two-dimensional simulation techniques. This paper implemented a three-dimensional numerical simulation study on the asymmetry of flow pattern in the baffled tube reactor which was observed experimentally. A systematic study by numerical simulation was carried out which covered a range of oscillatory Reynolds number (Reo) from 100 to 5,000 and employed models respectively for laminar and turbulent flows. It was found in the simulation that under symmetric boundary conditions the transition from axially symmetric flow to asymmetric one depended on the numerical technique employed in simulation. With a structured grid frame the transition occurred at Reo much greater than that with an unstructured grid frame, for both laminar and turbulent flows. It is not rational that the onset of the transition changes with the accuracy of numerical technique. Based on the simulation results, it was postulated that the asymmetry appeared in simulations with symmetric boundary conditions might result from the accumulation of calculation errors but the asymmetry observed in experiments might result from the slight asymmetry of geometry which exists inevitably in any experiment apparatus. To explore the influence of the slight asymmetry of geometry, the effect of the eccentricity of baffles and the declination of oscillating boundary were studied by use of the finite volume method with a structured grid and adaptive time steps. The simulation result showed that both the eccentricity of baffles and the declination of oscillating boundary have obvious influence on the asymmetry of flow patterns for laminar and turbulent flow. More details were discussed in the paper.


Author(s):  
M. H. Shojaee Fard ◽  
M. B. Ehghaghi ◽  
F. A. Boyaghchi

On the test bed of centrifugal pump, the centrifugal pump performance has been investigated using water and viscous oil as Newtonian fluids, whose kinematic viscosities are 1 × 10−6, 43 × 10−6 and 62 × 10−6 m2/s, respectively. Also, the finite volume method is used to model the three dimensional viscous fluids for different operating conditions. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The κ-ε turbulence model is adopted to describe the turbulent flow process. These simulations have been made with a steady calculation and using the multiple reference frame (MRF) technique to take into account the impeller-volute interaction. Numerical results are compared with the experimental characteristic curve for each viscous fluid. The data obtained allow the analysis of the main phenomena existent in this pump, such as: head, efficiency, power and pressure field changes for different operating conditions. Also, the correction factors for oils are obtained from the experimental for part loading (PL), best efficiency point (BEP) and over loading (OL) and the results are compared with proposed factors by American Hydraulic Institute (HIS) and Soviet Union (USSR). The comparisons between the numerical and experimental results show a good agreement.


1991 ◽  
Vol 113 (1) ◽  
pp. 34-41 ◽  
Author(s):  
G. J. Yoo ◽  
R. M. C. So ◽  
B. C. Hwang

Internal rotating boundary-layer flows are strongly influenced by large circumferential strain and the turbulence field is anisotropic. This is especially true in the entry region of a rotating pipe where the flow is three dimensional, the centrifugal force due to fluid rotation is less important, and the circumferential strain created by surface rotation has a significant effect on the turbulence field near the wall. Consequently, viscous effects cannot be neglected in the near-wall region. Several low-Reynolds-number turbulence closures are proposed for the calculation of developing rotating pipe flows. Some are two-equation closures with and without algebraic stress correction, while others are full Reynolds-stress closures. It is found that two-equation closures with and without algebraic stress correction are totally inadequate for this three-dimensional flow, while Reynolds-stress closures give results that are in good agreement with measurements over a wide range of rotation numbers.


Author(s):  
C. Poensgen ◽  
H. E. Gallus

A measuring technique based on multisensor hot-wire anemometry has been developed to determine the unsteady three-dimensional velocity vector and the structure of turbulent flows. It then has been applied to the passage and the exit flow of an annular compressor cascade, which is periodically disturbed by the wakes of a cylinder rotor, located about 50 percent of blade chord upstream. In part I of this paper the decay of the rotor wakes will be described first without stator and secondly through a stator passage. The time-dependent turbulent flow field downstream of this stator is discussed in Part II. The rotor wakes have a major influence on the development of three-dimensional separated regions inside the compressor cascade, and this interaction will be addressed in both parts of this paper.


Sign in / Sign up

Export Citation Format

Share Document