scholarly journals Numerical Study of Three-Dimensional Surface Jets Emerging from a Fishway Entrance Slot

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1079
Author(s):  
Lena Mahl ◽  
Patrick Heneka ◽  
Martin Henning ◽  
Roman B. Weichert

The efficiency of a fishway is determined by the ability of immigrating fish to follow its attraction flow (i.e., its jet) to locate and enter the fishway entrance. The hydraulic characteristics of fishway entrance jets can be simplified using findings from widely investigated surface jets produced by shaped nozzles. However, the effect of the different boundary conditions of fishway entrance jets (characterized by vertical entrance slots) compared to nozzle jets must be considered. We investigate the downstream propagation of attraction jets from the vertical slot of a fishway entrance into a quiescent tailrace, considering the following boundary conditions not considered for nozzle jets: (1) slot geometry, (2) turbulence characteristics of the approach flow to the slot, and (3) presence of a lateral wall downstream of the slot. We quantify the effect of these boundary conditions using three-dimensional hydrodynamic-numeric flow simulations with DES and RANS turbulence models and a volume-of-fluid method (VoF) to simulate the free water surface. In addition, we compare jet propagation with existing analytical methods for describing jet propagations from nozzles. We show that a turbulent and inhomogeneous approach flow towards a vertical slot reduces the propagation length of the slot jet in the tailrace due to increased lateral spreading compared to that of a jet produced by a shaped nozzle. An additional lateral wall in the tailrace reduces lateral spreading and significantly increases the propagation length. For highly turbulent flows at fishway entrances, the RANS model tends to overestimate the jet propagation compared to the transient DES model.

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Binaya Baidar ◽  
Jonathan Nicolle ◽  
Chirag Trivedi ◽  
Michel J. Cervantes

The Winter-Kennedy (WK) method is commonly used in relative discharge measurement and to quantify efficiency step-up in hydropower refurbishment projects. The method utilizes the differential pressure between two taps located at a radial section of a spiral case, which is related to the discharge with the help of a coefficient and an exponent. Nearly a century old and widely used, the method has shown some discrepancies when the same coefficient is used after a plant upgrade. The reasons are often attributed to local flow changes. To study the change in flow behavior and its impact on the coefficient, a numerical model of a semi-spiral case (SC) has been developed and the numerical results are compared with experimental results. The simulations of the SC have been performed with different inlet boundary conditions. Comparison between an analytical formulation with the computational fluid dynamics (CFD) results shows that the flow inside an SC is highly three-dimensional (3D). The magnitude of the secondary flow is a function of the inlet boundary conditions. The secondary flow affects the vortex flow distribution and hence the coefficients. For the SC considered in this study, the most stable WK configurations are located toward the bottom from θ=30deg to 45deg after the curve of the SC begins, and on the top between two stay vanes.


Author(s):  
S-J Seo ◽  
K-Y Kim ◽  
S-H Kang

A numerical study is presented for Reynolds-averaged Navier-Stokes analysis of three-dimensional turbulent flows in a multiblade centrifugal fan. Present work aims at development of a relatively simple analysis method for these complex flows. A mathematical model of impeller forces is obtained from the integral analysis of the flow through the impeller. A finite volume method for discretization of governing equations and a standard k-ɛ model as turbulence closure are employed. For the validation of the mathematical model, the computational results for velocity components, static pressure, and flow angles at the exit of the impeller were compared with experimental data. The comparisons show generally good agreement, especially at higher flow coefficients.


2005 ◽  
Vol 122 (3) ◽  
pp. 42-55
Author(s):  
Jorge BARATA

The present paper presents a numerical study on evaporating droplets injected through a turbulent cross-stream. Several models have been used with more or less success to describe similar phenomena, but much of the reported work deals only with sprays in stagnant surroundings. The ultimate goal of this study is to develop an Eulerian/Lagragian approach to account for turbulent transport, dispersion, evaporation and coupling between both processes in practical spray injection systems, which usually include air flows in the combustion chamber like swirl, tumble and squish in I.C. engines or crossflow in gas turbines. In this work a method developed to study isothermal turbulent dispersion is extended to the case of an array of evaporating droplets through a crossflow, and the performance of two different evaporation models widely used is investigated. The convection terms were evaluated using the hybrid or the higher order QUICK scheme. The dispersed phase was treated using a Lagrangian reference frame. The differences between the two evaporation models and its applicability to the present flow are analysed in detail. During the preheating period of the Chen and Pereira [1] model the droplets are transported far away from the injector by the crossflow, while with the Sommerfeld [2] formulation for evaporation the droplet has a continuous variation of the diameter. This result has profound implications on the results because the subsequent heat transfer and turbulent dispersion is extremely affected by the size of the particles (or droplets). As a consequence, droplet diameter, temperature and mass fraction distributions were found to be strongly dependent on the evaporation model used. So, a new formulation that takes into account also the transport of the evaporating droplets needs to be developed if practical injection systems are to be simulated. Also, in order to better evaluate and to improve the vaporization models more detailed measurements of three-dimensional configurations are required.


2012 ◽  
Vol 1 (33) ◽  
pp. 38
Author(s):  
Andrea Ruju ◽  
Pablo Higuera ◽  
Javier L. Lara ◽  
Inigo J. Losada ◽  
Giovanni Coco

This work presents the numerical study of rip current circulation on a barred beach. The numerical simulations have been carried out with the IH-FOAM model which is based on the three dimensional Reynolds Averaged Navier-Stokes equations. The new boundary conditions implemented in IH-FOAM have been used, including three dimensional wave generation as well as active wave absorption at the boundary. Applying the specific wave generation boundary conditions, the model is validated to simulate rip circulation on a barred beach. Moreover, this study addresses the identification of the forcing mechanisms and the three dimensional structure of the mean flow.


Author(s):  
Daniel J. Garmann ◽  
Miguel R. Visbal ◽  
Paul D. Orkwis

A numerical study is conducted to examine the vortex structure about a revolving wing in quiescent flow employing a high-fidelity, implicit large eddy simulation (ILES) technique found to be effective in simulating flows that exhibit interspersed regions of laminar, transitional, and turbulent flows. The revolving wing configuration consists of a single, aspect ratio one rectangular plate extended out a distance of 0.5 chords from the origin. Shortly after the onset of the motion, the rotating wing generates a stable and coherent vortex system across the leading edge and wing root that remains throughout the motion. The aerodynamic loads are also analyzed and found to remain mostly constant during the maneuver. Transitional effects on the vortex system are investigated over a range of Reynolds numbers (3,000 < Re < 15,000). It is found that higher Reynolds numbers promote more breakdown of the leading edge and root vortices, but do not alter the stability of the vortex system. The aerodynamic loads also show little sensitivity to Reynolds number with the higher Reynolds numbers producing only moderately higher forces. Comparisons with recent experimental PIV measurements using a PIV-like data reduction technique applied to the computational solution show very favorable agreement with the mid-span velocity and vorticity contours.


Author(s):  
H Fu ◽  
M J Tindal ◽  
A P Watkins ◽  
M Yianneskis

This paper presents a numerical study of the flows in an internal combustion engine inlet manifold. The three-dimensional turbulent flows through a single branched manifold were simulated using the κ-ɛ model of turbulence. The flow structure was characterized in detail and the effects of the flow split ratio and inlet flowrate were investigated. Detailed measurements were performed to validate the numerical predictions, using laser Doppler anemometry. Good agreement was obtained between the predicted and the measured mean velocities. The predicted levels of turbulence energy are in qualitative agreement with the measurements.


Author(s):  
W N Al-Rafai ◽  
Y D Tridimas ◽  
N H Woolley

An experimental and numerical study of turbulent air flow in circular section pipe bends was carried out in order to determine the influence of bend curvature on the flow. Two bends were used, with inside diameters of 43 mm and curvature ratios of 1:13.95 and 1:6.98. The corresponding Dean numbers were 9138 and 12919. The Reynolds number for both cases was 34132. Measurements of mean streamwise and r.m.s. velocities were made using laser Doppler anemometry. Numerical modelling was based on the commercial computer package ‘PHOENICS’, employing a k-ɛ turbulence model, standard wall functions and a three-dimensional elliptic solution procedure. The results showed that the secondary flow as more prevalent in the smaller bend. In view of certain simplifying assumptions in the theoretical model, encouraging agreement between experimental results and numerical predictions was obtained.


2013 ◽  
Vol 740 ◽  
pp. 836-841
Author(s):  
Ping Dai ◽  
Nai Yun Yu

Film cooling effectiveness downstream and spanwise distribution of one row of converging slot-holes at the blade were investigated using a three-dimensional finite volume method and multi-block technique at the blowing ratio ranging from 0.5 to 2.0. Previous successful application of a two-layer turbulence model to cylindrical is extended to predict film cooling for the converging slot-hole geometry. Also, the influence of jet angle on film cooling effectiveness from converging slot-holes at the blade was studied. The results showed that the centerline effectiveness of converging slot-hole was going to be increased along with blowing ratio increasing. It was also shown that the uniform lateral spreading of the effectiveness with an enhancement of the intersection of the two slot-holes. It was found that cooling effectiveness for 25° was superior to other jet angle for any blowing ratios. Furthermore, the improvement realized by the small jet angle compared to the other jet angle holes was more important at the higher blowing ratio than it was at the lower one. Cooling effectiveness of 45° and 60° holes was declining along downstream of the holes, but it was improving over again at somewhere from downstream and then it was continuing decline. Cooling effectiveness of 60° holes presented a marked improvement compared to 45° holes at beyond downstream of the holes. Counter rotating vortex pairs at the exit of big jet angle holes were obvious and strong, but these vortexes have been weakened at the exit of small jet angle holes and results in a better coolant protection than that of the big jet angle holes.


Author(s):  
C. Hah

A computational procedure based on the compressible Reynolds-averaged Navier-Stokes equation has been developed for the viscous flow through an isolated compressor rotor. The numerical scheme is based on fully conservative control volume formulation and solves various conservation equations in fully elliptic form on the rotating coordinates fixed on the rotor. An algebraic Reynolds stress model is used to describe the turbulent transport terms. The numerical procedure has been applied to predict three-dimensional turbulent flows through two different isolated compressor rotors. The detailed quantitative comparisons with two sets of well-documented data show that the developed computational procedure predicts the viscous flow development over the blading and in the wake with the accuracy satisfactory for most engineering purposes; the computer code can be used for the guidance of advanced rotor design.


2017 ◽  
Vol 837 ◽  
pp. 182-209 ◽  
Author(s):  
N. Vinha ◽  
F. Meseguer-Garrido ◽  
J. de Vicente ◽  
E. Valero

A numerical study of the saturation process inside a rectangular open cavity is presented. Previous experiments and linear stability analysis of the problem completely described the flow in its onset, as well as in a saturated regime, characterized by three-dimensional centrifugal modes. The morphology of the modes found in the experiments matched the ones predicted by linear analysis, but with a shift in frequencies for the oscillating modes. A three-dimensional incompressible direct numerical simulation (DNS) is employed for a detailed investigation of the saturation process inside a cavity with dimensions similar to the one used in the experiments, to further explain the behaviour of these modes. In this work, periodic boundary conditions are first imposed to better understand the effect of the saturation process far from the walls. Then, the effects of spanwise solid wall boundary conditions are investigated with a DNS reproducing the full dynamics of the experiments. The main flow structures are identified using the dynamic mode decomposition technique and compared with previous experimental and linear stability analysis results. The main reason for the aforementioned shift in frequency is explained in this paper, as it is a function of the velocity of the main recirculating vortex.


Sign in / Sign up

Export Citation Format

Share Document