Petrographic characteristic of middle carboniferous coal of Bashkirian formation in Lozovskoi coal area

Author(s):  
Natalia I. Fedorova ◽  
Natalia A. Grabovaya ◽  
Zinfer R. Ismagilov

2021 ◽  
pp. M57-2021-15
Author(s):  
E. V. Deev ◽  
G. G. Shemin ◽  
V. A. Vernikovsky ◽  
O. I. Bostrikov ◽  
P. A. Glazyrin ◽  
...  

AbstractThe Yenisei-Khatanga Composite Tectono-Sedimentary Element (YKh CTSE) is located between the Siberian Craton and the Taimyr-Severnaya Zemlya fold-and-thrust belt. The total thickness of the Mesoproterozoic-Cenozoic sediments of YKh CTSE reaches 20 to 25 km. They are divided into four tectono-sedimentary elements (TSE): (i) Mesoproterozoic-early Carboniferous Siberian Craton continental margin, (ii) middle Carboniferous-Middle Triassic syn-orogenic Taimyr foreland basin, (iii) late Permian-Early Triassic syn-rift, and (iv) Triassic-Early Paleocene post-rift. The last one is the most important in terms of its petroleum potential and is the most drilled part of the CTSE. Its thickness accounts for half of the total thickness of YKh CTSE. The margins of the post-rift TSE and the inner system of inversion swells and adjacent troughs and depressions were shaped by three tectonic events: (i) middle Carboniferous-Middle Triassic Taimyr orogeny, (ii) Late Jurassic-Early Cretaceous Verkhoyansk orogeny, (iii) Late Cenozoic uplift. These processes led to more intense migration of hydrocarbons, the trap formation and their infill with hydrocarbons. Triassic, Jurassic, and Lower Cretaceous source rocks are mostly gas-prone, and among 20 discovered fields in Jurassic and Cretaceous plays, 17 are gas or mixed-type fields.


2021 ◽  
pp. M57-2020-20
Author(s):  
E. Henriksen ◽  
D. Ktenas ◽  
J. K. Nielsen

AbstractThe Finnmark Platform Composite Tectono-Sedimentary Element (CTSE), located in the southern Barents Sea, is a northward-dipping monoclinal structural unit. It covers most of the southern Norwegian Barents Sea where it borders the Norwegian Mainland. Except for the different age of basement, the CTSE extends eastwards into the Kola Monocline on the Russian part of the Barents Sea.The general water depth varies between 200-350 m, and the sea bottom is influenced by Plio-Pleistocene glaciations. A high frequency of scour marks and deposition of moraine materials exists on the platform areas. Successively older strata sub-crop below the Upper Regional Unconformity (URU, which was) formed by several glacial periods.Basement rocks of Neoproterozoic age are heavily affected by the Caledonian Orogeny, and previously by the Timanide tectonic compression in the easternmost part of the Finnmark Platform CTSE.Depth to crystalline basement varies considerably and is estimated to be from 4-5 to 10 km. Following the Caledonian orogenesis, the Finnmark Platform was affected by Lower to Middle Carboniferous rifting, sediment input from the Uralian Orogen in the east, the Upper Jurassic / Lower Cretaceous rift phase and the Late Plio-Pleistocene isostatic uplift.A total of 8 exploration wells drilled different targets on the platform. Two minor discoveries have been made proving presence of both oil and gas and potential sandstone reservoirs of good quality identified in the Visean, Induan, Anisian and Carnian intervals. In addition, thick sequences of Perm-Carboniferous carbonates and spiculitic chert are proven in the eastern Platform area. The deep reservoirs are believed to be charged from Paleozoic sources. A western extension of the Domanik source rocks well documented in the Timan-Pechora Basin may exist towards the eastern part of the Finnmark Platform. In the westernmost part, charge from juxtaposed down-faulted basins may be possible.


2021 ◽  
Author(s):  
Valentyn Loktyev ◽  
Sanzhar Zharkeshov ◽  
Oleg Gotsynets ◽  
Oleksandr Davydenko ◽  
Mikhailo Machuzhak ◽  
...  

Abstract The paper considers the problematics of identifying proper analogues for understanding carbonate and clastic reservoir distribution and prediction in the Lower Permian and Upper and Lower Carboniferous within the Dnieper-Donets basin. The focus of the exploration team was finding meandering rivers. This choice was proven good in mapping reservoirs and finding traps deeper in the Upper and Middle Carboniferous, although for Permian clastic section the approach was not helpful. The second option was desert dunes, but poor sorting of reservoirs suggests a more complex picture. Analogues such as desert environment is quite logical for describing Lower Permian as aridic climate, with red and brown shales and sands. Lower Permian reservoirs have a moon-like shape in the vertical sections that could be easily mistaken for river channels, but in such a dry climate, it is very likely water flow channels with sporadic hurricane-related activities. Core and logs shows chaotic grain sizes, but more with fine grains with almost no coarse grains. The source of sedimentary material could be mountains of Ukrainian Rock Shield from the South and Voronezh massif from the North. This conceptual model is proposing not to look for meandering channels, but more for braided channels with poorly sorted material. The current time analogue could be the Oman desert between the mountains and peninsula. From satellite images, braided channels are clearly visible in the direction towards the Indian Ocean. The channels’ internal structure is quite heterogeneous. This method suggests exploration targets with possible widths of the channels as big as hundreds of meters and their lengths under 10 and between 10-20 kilometres maximum.


1964 ◽  
Vol 1 (3) ◽  
pp. 167-183 ◽  
Author(s):  
W. K. Fyson

On the north side of a major fault three generations of folds F1, F2, F3 affect pre-Carboniferous phyllites; south of the fault two generations, C1, C2, affect middle Carboniferous clastic rocks. The F1 folds are isoclinal and obscure. The main folds, F2 in the phyllites and C1 in the Carboniferous rocks, trend east-northeast parallel to the fault. F2 are overturned southward and C1 northward, both toward the fault. Cross-folds, F3 in the phyllites and C2 in the Carboniferous rocks, trend northnortheast. Steeply plunging F3 and C2 are asymmetric and Z-shaped in plan profile.The F2 folds in the phyllites, though similar in geometry to folds in the middle Carboniferous rocks, appear, like F1 and F2, to have formed prior to the middle Carboniferous. This is indicated by the occurrence of unfolded Devonian(?) granitic intrusions crossing F3 folds, and a few miles north of the major fault, by middle Carboniferous rocks lying unconformably- above similar intrusions.One possible explanation for the repeated trends, which also accounts for the sense of overturning and asymmetry of the folds, relates the folding to alternating vertical and horizontal movements along the major fault. The vertical movements were followed by gravity sliding toward the fault to produce the main folds, and the horizontal movements, repeatedly dextral in sense, resulted in the Z-shaped cross-folds.


Sign in / Sign up

Export Citation Format

Share Document