Effect of ultrasonic pretreatment on the oil removal of ASP flooding produced water

2015 ◽  
pp. 647-652
Author(s):  
Fu-jun Xia
2014 ◽  
Vol 134 ◽  
pp. 241-246 ◽  
Author(s):  
S. Judd ◽  
H. Qiblawey ◽  
M. Al-Marri ◽  
C. Clarkin ◽  
S. Watson ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
pp. 360
Author(s):  
Ku Esyra Hani ◽  
Mohammed Abdalla Ayoub

The objective of this study was to investigate the effect of polymer (GLP-100) and surfactant (MFOMAX) towards the efficiency of oil removal in a flotation column by using the Response Surface Methodology (RSM). Various concentrations of surfactant (250, 372 and 500 ppm) and polymer (450, 670, and 900 ppm) produced water were prepared. Dulang crude oil was used in the experiments. Flotation operating parameters such as gas flow rate (1–3 L/min) and duration of flotation (2–10 min) were also investigated. The efficiency of oil removal was calculated based on the difference between the initial concentration of oil and the final concentration of oil after the flotation process. From the ANOVA analysis, it was found that the gas flow rate, surfactant concentration, and polymer concentration contributed significantly to the efficiency of oil removal. Extra experiments were conducted to verify the developed equation at a randomly selected point using 450 ppm of polymer concentration, 250 ppm of surfactant concentration, 3 L/min gas flowrate and duration of 10 min. From these extra experiments, a low standard deviation of 1.96 was discovered. From this value, it indicates that the equation can be used to predict the efficiency of oil removal in the presence of surfactant and polymer (SP) by using a laboratory flotation column.


Author(s):  
N. Chin ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.


2014 ◽  
Vol 56 (7) ◽  
pp. 1802-1808 ◽  
Author(s):  
Syllos Santos da Silva ◽  
Osvaldo Chiavone-Filho ◽  
Eduardo Lins de Barros Neto ◽  
Edson Luiz Foletto

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 395 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Wei Zhang ◽  
Cheng Fu ◽  
Ying Wang ◽  
...  

The issue of pipeline scaling and oil-water separation caused by treating produced water in Alkali/Surfactant/Polymer (ASP) flooding greatly limits the wide use of ASP flooding technology. Therefore, this study of the demulsification-flocculation mechanism of oil-water emulsion in ASP flooding produced water is of great importance for ASP produced water treatment and its application. In this paper, the demulsification-flocculation mechanism of produced water is studied by simulating the changes in oil-water interfacial tension, Zeta potential and the size of oil droplets of produced water with an added demulsifier or flocculent by laboratory experiments. The results show that the demulsifier molecules can be adsorbed onto the oil droplets and replace the surfactant absorbed on the surface of oil droplets, reducing interfacial tension and weakening interfacial film strength, resulting in decreased stability of the oil droplets. The demulsifier can also neutralize the negative charge on the surface of oil droplets and reduce the electrostatic repulsion between them which will be beneficial for the accumulation of oil droplets. The flocculent after demulsification of oil droplets by charge neutralization, adsorption bridging, and sweeping all functions together. Thus, the oil droplets form aggregates and the synthetic action by the demulsifier and the flocculent causes the oil drop film to break up and oil droplet coalescence occurs to separate oil water.


2015 ◽  
Vol 29 (11) ◽  
pp. 7734-7740 ◽  
Author(s):  
Mona Eftekhardadkhah ◽  
Svein Viggo Aanesen ◽  
Karsten Rabe ◽  
Gisle Øye

2018 ◽  
Vol 4 (4) ◽  
pp. 539-548 ◽  
Author(s):  
Wenjing Dong ◽  
Dejun Sun ◽  
Yujiang Li ◽  
Tao Wu

In situ formed magnesium hydroxide (IFM) can be used as a promising technology for emulsified oil removal and recovery.


Sign in / Sign up

Export Citation Format

Share Document