scholarly journals Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Wang ◽  
Morten Ryberg ◽  
Yi Yang ◽  
Kuishuang Feng ◽  
Sami Kara ◽  
...  

AbstractSteel production is a difficult-to-mitigate sector that challenges climate mitigation commitments. Efforts for future decarbonization can benefit from understanding its progress to date. Here we report on greenhouse gas emissions from global steel production over the past century (1900-2015) by combining material flow analysis and life cycle assessment. We find that ~45 Gt steel was produced in this period leading to emissions of ~147 Gt CO2-eq. Significant improvement in process efficiency (~67%) was achieved, but was offset by a 44-fold increase in annual steel production, resulting in a 17-fold net increase in annual emissions. Despite some regional technical improvements, the industry’s decarbonization progress at the global scale has largely stagnated since 1995 mainly due to expanded production in emerging countries with high carbon intensity. Our analysis of future scenarios indicates that the expected demand expansion in these countries may jeopardize steel industry’s prospects for following 1.5 °C emission reduction pathways. To achieve the Paris climate goals, there is an urgent need for rapid implementation of joint supply- and demand-side mitigation measures around the world in consideration of regional conditions.

2020 ◽  
Vol 12 (19) ◽  
pp. 8016
Author(s):  
Feng Wang ◽  
Min Wu ◽  
Jiachen Hong

To achieve the national carbon intensity (NCI) target, China should adopt effective mitigation measures. This paper aims to examine the effects of key mitigation measures on NCI. Using the input-output table in 2017, this paper establishes the elasticity model of NCI to investigate the effects of industrial development, intermediate input coefficients, energy efficiency, and residential energy saving on NCI, and further evaluates the contributions of key measures on achieving NCI target. The results are shown as follows. First, the development of seven sectors will promote the increase of NCI while that of 21 sectors will reduce NCI. Second, NCI will decrease significantly with the descending of intermediate input coefficients of sectors, especially electricity production and supply. Third, improving energy efficiency and residential energy saving degree could reduce NCI, but the latter has limited contribution. Fourth, the development of all sectors will reduce NCI by 10.11% in 2017–2022 if sectors could continue the historical development trends. Fifth, assuming that sectors with rising intermediate input coefficients would keep their coefficients unchanged in the predicting period and sectors with descending coefficients would continue the historical descending trend, the improvement of technology and management of all sectors will reduce NCI by 14.02% in 2017–2022.


Energy ◽  
2021 ◽  
pp. 120978
Author(s):  
Géremi Gilson Dranka ◽  
Paula Ferreira ◽  
A. Ismael F. Vaz

2017 ◽  
Vol 871 ◽  
pp. 77-86
Author(s):  
Stefanie Kabelitz ◽  
Sergii Kolomiichuk

The supply of electricity is growing increasingly dependent on the weather as the share of renewable energies increases. Different measures can nevertheless maintain grid reliability and quality. These include the use of storage technologies, upgrades of the grid and options for responsiveness to supply and demand. This paper focuses on demand side management and the use of flexibility in production processes. First, the framework of Germany’s energy policy is presented and direct and indirect incentives for businesses to seek as well as to provide flexibility capabilities are highlighted. Converting this framework into a mixed integer program leads to multi-objective optimization. The challenge inherent to this method is realistically mapping the different objectives that affect business practices directly and indirectly in a variety of laws. An example is introduced to demonstrate the complexity of the model and examine the energy flexibility. Second, manufacturing companies’ energy efficiency is assessed under the frequently occurring conditions of heavily aggregated energy consumption data and of information with insufficient depth of detail to perform certain analyses, formulate actions or optimize processes. The findings obtained from the energy assessment and energy consumption projections are used to model the production system’s energy efficiency and thus facilitate optimization. Methods of data mining and machine learning are employed to project energy consumption. Aggregated energy consumption data and different production and environmental parameters are used to assess indirectly measured consumers and link projections of energy consumption with the production schedule.


2018 ◽  
Vol 10 (8) ◽  
pp. 2764 ◽  
Author(s):  
Abhishek Chaudhary ◽  
Arne Mooers

Efficient forward-looking mitigation measures are needed to halt the global biodiversity decline. These require spatially explicit scenarios of expected changes in multiple indicators of biodiversity under future socio-economic and environmental conditions. Here, we link six future (2050 and 2100) global gridded maps (0.25° × 0.25° resolution) available from the land use harmonization (LUH) database, representing alternative concentration pathways (RCP) and shared socio-economic pathways (SSPs), with the countryside species–area relationship model to project the future land use change driven rates of species extinctions and phylogenetic diversity loss (in million years) for mammals, birds, and amphibians in each of the 804 terrestrial ecoregions and 176 countries and compare them with the current (1900–2015) and past (850–1900) rates of biodiversity loss. Future land-use changes are projected to commit an additional 209–818 endemic species and 1190–4402 million years of evolutionary history to extinction by 2100 depending upon the scenario. These estimates are driven by land use change only and would likely be higher once the direct effects of climate change on species are included. Among the three taxa, highest diversity loss is projected for amphibians. We found that the most aggressive climate mitigation scenario (RCP2.6 SSP-1), representing a world shifting towards a radically more sustainable path, including increasing crop yields, reduced meat production, and reduced tropical deforestation coupled with high trade, projects the lowest land use change driven global biodiversity loss. The results show that hotspots of future biodiversity loss differ depending upon the scenario, taxon, and metric considered. Future extinctions could potentially be reduced if habitat preservation is incorporated into national development plans, especially for biodiverse, low-income countries such as Indonesia, Madagascar, Tanzania, Philippines, and The Democratic Republic of Congo that are otherwise projected to suffer a high number of land use change driven extinctions under all scenarios.


2017 ◽  
Author(s):  
Mary Amiti ◽  
Patrick McGuire ◽  
David Weinstein

2005 ◽  
Vol 2 (2) ◽  
pp. 108-119 ◽  
Author(s):  
Andrea Melis

This paper analyses and discusses the “positive” issues of the overriding international financial reporting standards principle of “true and fair view” in connection with corporate governance mechanisms. The analysis is based on case study evidence. Empirical evidence from the Parmalat case with regards to the role of the information supply and demand side agents is analysed. This study provides evidence on how the relationship between corporate financial reporting and corporate governance mechanisms may influence the enforcement of the international financial reporting standards overriding principle of “true and fair view”. Evidence is found that the enforcement of the “true and fair view” principle is intrinsically flawed when the accountability and the overall corporate governance systems do not work properly. Some evidence is also found for the argument that a lack in the quality of information supplied by the corporate financial system hurdles the role information demand side agents as effective monitors.


2015 ◽  
Vol 805 ◽  
pp. 25-31 ◽  
Author(s):  
Ralf Boehm ◽  
Johannes Bürner ◽  
Jörg Franke

In electric energy systems based on renewable generation plants supply and demand often do not occur in the same period of time. Consequently demand side management is gaining importance whereby decentralized automation offers opportunities in industrial environments. Compressed air systems on industrial plants consist of air compressors, compressed air reservoirs and compressed air lines. With suitable dimensioning those industrial compressed-air systems can be used for demand side management purpose. As power consumption of industrial air compressors ranges between a few and several hundred kilowatts each, swarms of communicatively connected air compressors can contribute to the stabilization of power grids. To avoid costly production downtime it is to ensure, that a reliable, non-disruptive supply of compressed air can be maintained at all time. Industrial compressed air systems equipped with automation technology and artificial intelligence, which hereinafter are referred to as Cyber-Physical Compressed Air Systems (CPCAS), allow new business models for utilities, industrial enterprises, compressor manufacturers and service providers. In addition to basic operating parameters like current air pressure and status, those systems can process further information and create, for example, profiles on compressed air consumption over time. By enriching those profiles with data on pressure, volumes, system restrictions and current production requirements (plans), the CPCAS can identify the available potential for demand side management. Ipso facto predictive power on electricity consumption is increasing. By providing the information obtained to the power company or a service provider, savings in electricity costs may be achieved. Expenses within the industrial company may be lowered further as compliance with agreed load limits is being improved by automatic shutdown of air compressors upon reaching the load limit. Within this article the structure of the aforementioned Cyber-Physical Compressed Air Systems is presented in more detail, relations between the major actors are being shown and possible business models are being introduced.


Sign in / Sign up

Export Citation Format

Share Document