Shortcut/complete nitrification and denitrification in a pilot-scale anoxic/oxic system treating wastewater from synthetic ammonia industry

2015 ◽  
pp. 257-260
Author(s):  
Y Yan ◽  
J Gao ◽  
Z Zhou ◽  
S Li
2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2015 ◽  
Vol 57 (42) ◽  
pp. 19609-19618
Author(s):  
Jiashun Cao ◽  
Jianming Cai ◽  
Chao Li ◽  
Zhen Zhang ◽  
Yusheng Li ◽  
...  

1994 ◽  
Vol 29 (10-11) ◽  
pp. 135-143 ◽  
Author(s):  
R. F. Gonçalves ◽  
L. Le Grand ◽  
F. Rogalla

This paper introduces biological phosphorus removal (Bio-P) from wastewater on a submerged biofilter. Pilot scale research was carried out over a period of two years using a floating upflow aerated filter, originally designed for nitrification and denitrification of sewage. The factors which influence Bio-P on fixed film processes and the possible biofilter configurations which eliminate C, N and P are discussed. The procedures are applicable to all types of treatment plants using biofilters, both new and already in existence, making no distinction between the different processes available today, co-current and counter-current filters. Biological phosphorus removal can be associated to the different treatment levels required: organic matter removal; secondary nitrification secondary nitrification and denitrification. For the third option - complete nutrient removal, treatment is completed with a hydraulic retention time in the filter bed of under four hours. Because of the simultaneous filtration with effluent SS below 10 mg/l, low phosphorus residuals can be achieved by Bio-P alone. The modifications required for setting up this operating procedure on any treatment plant are presented.


2021 ◽  
Vol 10 (13) ◽  
pp. e589101321560
Author(s):  
Kiemi de Brito Murata ◽  
Bruno Garcia Silva ◽  
Carla Eloísa Diniz dos Santos ◽  
Dagoberto Yukio Okada ◽  
Rafael Brito de Moura ◽  
...  

Simultaneous nitrification and denitrification (SND) is a process that can remove both nitrogen and organic matter in a single unit. Several bench-scale studies show that the structured bed reactors (STBR) subjected to recirculation and intermittent aeration have achieved a good performance for SND treating different types of wastewater. Thus, this study took a step forward and evaluated the efficiency and stability of treating domestic sewage in a pilot-scale STBR. COD removal efficiencies higher than 87% were achieved in the whole experimental period. The highest Total-N removal efficiency was approximately 74 ± 7% by adopting a hydraulic retention time (HRT) of 47.2 h and intermittent aeration (2 h aerated and 1 h non-aerated). The setup of the aeration system was an important mechanism to ensure the optimal balance between nitrification and denitrification in a pilot-scale system.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2225-2228 ◽  
Author(s):  
F. Çeçen ◽  
I. E. Gönenç

Design criteria for nitrification and denitrification of high-strength nitrogenous wastes have been derived by pilot-scale experiments in two submerged filters in series. Molasses proved to be a suitable carbon source in denitrif ication. It has been shown that oxygen is the rate limiting substrate in nitrification and that maximum denitrification rates can only be achieved at an influent COD/NOX−N ratio of approximately 5.


2012 ◽  
Vol 550-553 ◽  
pp. 2104-2107
Author(s):  
Yi Ming Chen

The impact of SRT on simultaneous nitrification and denitrification (SND) in the Carrousel Oxidation Ditch was carried out based on pilot-scale to treat low COD/TN municipal sewage. The impact factor, sludge retention time (SRT), was investigated on the occurrence of SND. The experiment results showed that in the oxygen-deficient environment whose DO was 0.3 mg/L, R of 50%, MLSS of 4000 mg/L, the treatment efficiency achieved the best with SRT of 20 d, the COD, ammonia nitrogen, total nitrogen (TN) of effluent were lower than 32 mg/L, 5 mg/L, 13 mg/L, respectively, which was observed efficient phenomenon of SND. Overall, these results demonstrated that the Carrousel Oxidation Ditch with the occurrence of SND could have the potential to treat low C/N sewage.


Sign in / Sign up

Export Citation Format

Share Document