complete nitrification
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Shiyang Zhang ◽  
Jing Chen ◽  
Julin Yuan ◽  
Guangjun Wang

Abstract Intensive aquaculture usually produces large volumes of nutrient-rich wastewater, which is essential to treat to avoid eutrophication. This study aimed to evaluate the performance of five, continuously aerated, biofilm reactors treating simulated, high-strength, aquaculture wastewater under different dissolved oxygen (DO) levels, and the effects of DO increments on simultaneous nitrification-denitrification (SND). Continuous aeration was beneficial to complete nitrification. Total inorganic nitrogen (TIN), principally ammonium, was mainly removed by SND. The SND rate response to different DO levels was fitted well by the power function of y = 54.81 + 371.58/(1 − 0.16*x)^(−1/0.24) (R2 = 0.897, P = 0.000). When the TIN was removed completely, the optimal SND rate was defined and corresponded to a value of 121.8%. Accordingly, the optimal DO concentration was calculated as 2.10 mg/L, close to the actual level of 1.83 mg/L, at which the highest proportional removals of total nitrogen (58.0%) and TIN (57.3%) were obtained. Phosphorus was also removed by denitrifying polyphosphate-accumulating organisms.


2020 ◽  
Vol 26 (2) ◽  
pp. 190494-0
Author(s):  
Siriwanee Supajaruwong ◽  
Penpicha Satanwat ◽  
Wiboonluk Pungrasmi ◽  
Sorawit Powtongsook

Aquaponic systems (APSs) are based upon the sustainable utilization of nitrogen and phosphorus from a recirculating aquaculture system (RAS) as the nutrient source for plant production. Since the proper management of nitrogen and suspended solids are important for nutrient utilization efficiency, their optimization was evaluated. The RAS integrated with filtration unit and nitrifying biofilter provided complete nitrification without solid accumulation. Under the optimal treatment condition for 16 d, the treated water was low in ammonia (0 mg-N/L) and high in nitrate (> 6 mg-N/L) concentrations, which was appropriate for use in the cultivation of lettuce (Lactuca sativa). The RAS was then incorporated with hydroponics at a 5:1 fish: plant weight ratio. Moreover, the simplified APS was compared with a typical APS system that incorporated filtration unit and nitrifying biofilter. The natural growth of nitrifying microorganisms in the simplified APS could perform complete nitrification after 20 d of operation giving low ammonia and nitrite concentrations. The nutrient removal efficiency of the simplified APS resembled the typical system. During the aquaponics, the hydroponic unit in the aquaculture system was sufficient to control the nutrient concentrations within the appropriate levels for fish cultivation, i.e. nitrate (< 20 mg-N/L) and phosphate (< 3 mg-P/L).


2018 ◽  
Vol 103 (1) ◽  
pp. 177-189 ◽  
Author(s):  
Hanna Koch ◽  
Maartje A. H. J. van Kessel ◽  
Sebastian Lücker

Sign in / Sign up

Export Citation Format

Share Document