Research on effects of blade wrap angle on the centrifugal pump performance

Author(s):  
Shuting Ge ◽  
Wenwu Song
2014 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Lei Tan ◽  
Baoshan Zhu ◽  
Shuliang Cao ◽  
Hao Bing ◽  
Yuming Wang

Author(s):  
Muhamed Al-badawi ◽  
I. G. Adam ◽  
Sherif Haddara ◽  
Ahmed H. M. El Sherif

Direct or inverse design methods for centrifugal pumps play an important role in investigating their performance. In this paper, a very low specific speed centrifugal pump impeller of ns = 9.5 (metric), three blades and 222° wrap angle. This pump was investigated using the direct design method to achieve the blade shape geometry and examine the blade angle distribution. As the blade angle progression affects the pump performance, four models with different blade angle distribution were used to perform the hydrodynamic and suction performance of the pump. The linear and non-linear derived correlation models were designed firstly using ANSYS-BladeGen module then studied numerically using ANSYS-CFX module to solve the three-dimensional Navier-Stokes equations. Validation of the numerical simulation of the investigated centrifugal pump was done using experimental data. Numerical results show that the change in the blade angle distribution has an influence on the blade wrap angle. Consequently, the variation in the blade wrap angle affects the pump head and the relative velocity distribution. The pressure gradient varies in the pump with changing the blade length. Using the velocity streamline and the velocity vector, the eddies existence and distribution in the blade suction side affect the relative velocity distribution and the pump performance. It was found that the blade with the smallest length decreases the pump head and have best velocity distribution.


2021 ◽  
Vol 11 (19) ◽  
pp. 9052
Author(s):  
Linwei Tan ◽  
Yongfei Yang ◽  
Weidong Shi ◽  
Cheng Chen ◽  
Zhanshan Xie

To investigate the effect of blade wrap angle on the hydrodynamic radial force of a single blade centrifugal pump, numerical simulation is conducted on the pumps with different blade wrap angles. The effect of the wrap angle on the external characteristics and the radial force of a single blade centrifugal pump was analyzed according to the simulation result. It is found that, with the increase of the blade wrap angle, the head and efficiency of the single blade centrifugal pump are improved, the H-Q curve becomes steeper, and the efficiency also increased gradually, while the high-efficiency area is narrowed. The blade wrap angle has a great effect on the radial force of the single blade centrifugal pump. When the blade wrap angle is less than 360°, the horizontal component of the radial force is negative and the value is reduced with the increase of the wrap angle of the blade. When the wrap angle is larger than 360°, the horizontal component of the radial force is positive and the value increases with the increase of the wrap angle. Under part-loading conditions, the radial force of the single blade pump is significantly reduced with the increase of the blade wrap angle. When the wrap angle is smaller than 360°, the radial force decreases with the flow rate increase. In the condition that the wrap angle is larger than 360°, the radial force increases with the flow rate increase.


2011 ◽  
Vol 354-355 ◽  
pp. 615-620 ◽  
Author(s):  
Wei Li ◽  
Wei Dong Shi ◽  
Ting Jiang ◽  
Yan Xu ◽  
Tong Tong Li

In order to research the effect of the blade wrap angle and outlet angle on the hydraulic performance of the low-specific speed sewage pump, the Reynolds time-averaged Navier-Stokes equations was discretized based on the finite volume method, and the modified k-ε turbulence model were chosen in FLUENT. Numerical simulation of the internal flow within the centrifugal pump with the specific speed of 60 at different blade wrap angle and outlet angle is carried out. The analysis of the velocity and the turbulent kinetic energy distribution in different cases, and predicts the external characteristics of the several cases based on the loss analysis method. The study results show that the efficiency of pumps increase with decreasing the outlet angle and increasing the wrapping angle at the design of sewage pumps. According to the analysis, changing the blade outlet Angle has much more influence on the performance of the pump than changing the wrap angle.


Author(s):  
Mohammed Hamid Siddique ◽  
Abdus Samad ◽  
Shakhawat Hossain

The shape of impeller blades of a centrifugal pump affects the best efficiency point (BEP), and splitter blades improve the pump performance at BEP. In this work, multiple parameters such as number of blades, length of splitter blade, splitter blade angle at hub, and wrap angle were modified to maximize head and minimize input power. The problem was solved by a numerical and experimental approach. Initially, an impeller was designed and tested in a laboratory setup. The same impeller was simulated in a computational fluid dynamics (CFD) solver, checked the accuracy of the CFD results, optimized by an in-house surrogate-based optimization code and finally the optimal designed manufactured and tested again. The mix and match of the splitter blade with the other parameters improved the pump performance i.e. head by 8.2% and overall efficiency by 3%. The improvement was due to the reduction in pressure fluctuations and uniform blade loading throughout the impeller blade span.


2017 ◽  
Vol 42 (29) ◽  
pp. 18709-18717 ◽  
Author(s):  
Yuxing Bai ◽  
Fanyu Kong ◽  
Sunsheng Yang ◽  
Kai Chen ◽  
Tao Dai

Sign in / Sign up

Export Citation Format

Share Document