FEM analysis of the behaviour of a flexible retaining wall

Author(s):  
L Hazout ◽  
A Bouafia
2013 ◽  
Vol 12 (2) ◽  
pp. 961-980 ◽  
Author(s):  
Seong-Bae Jo ◽  
Jeong-Gon Ha ◽  
Mintaek Yoo ◽  
Yun Wook Choo ◽  
Dong-Soo Kim

2012 ◽  
Vol 188 ◽  
pp. 60-65
Author(s):  
Fu Lin Li ◽  
Fang Le Peng

The combined effects of the rate-dependent behavior of both the backfill soil and the geosynthetic reinforcement have been investigated, which should be attributed to the viscous property of material. A nonlinear finite element method (FEM) analysis procedure based on the Dynamic Relaxation method was developed for the geosynthetic-reinforced soil retaining wall (GRS-RW). In the numerical analysis, both the viscous properties of the backfill and the reinforcement were considered through the unified nonlinear three-component elastic-viscoplastic model. The FEM procedure was validated against a physical model test on geosynthetic-reinforced soil retaining wall with granular backfill. Extensive finite-element analyses were carried out to investigate the tensile force distributions in geosynthetic reinforcement of geosynthetic-reinforced soil retaining wall under the change of loading rate. It is found from the analyses that the presented FEM can well simulate the rate-dependent behavior of geosynthetic-reinforced soil retaining wall and the tensile force of geosynthetic reinforcement arranged in retaining wall.


2012 ◽  
Vol 535-537 ◽  
pp. 2027-2031 ◽  
Author(s):  
Jian Chun Wu ◽  
Rong Shi

Using dynamic elastic-plastic finite element method, on the base of works together and interaction between loess and flexible retaining wall, 3-D nonlinear FEM (ADINA) is used to analyze and discussed the dynamic response of slope protected by soil nailing retaining wall under the EL-Centro and man-made Lanzhou accelerogram. A model that is capable of simulating the nonlinear static and dynamic elastic-plastic behavior of soil is used to model the soil, and a bilinear elastic-plastic model that has hardening behavior is used to model the soil nailing. Friction-element is employed to describe the soil-structure interaction behavior.The results show that the method is safe and credible. The results of the FEM dynamic analysis can be a useful reference for engineers of the design and construction of the soil nailed wall.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m


2021 ◽  
Author(s):  
Hu Weidong ◽  
Zhu Xinnian ◽  
Zeng Yongqing ◽  
Xiaohong Liu ◽  
Peng Chucai

Abstract A reasonable method is proposed to calculate the active earth pressure of finite soils based on the drum deformation mode of the flexible retaining wall close to the basement’s outer wall. The flexible retaining wall with cohesionless sand is studied, and the ultimate failure angle of finite soils close to the basement’s outer wall is obtained using the Coulomb theory. Soil arch theory is led to get the earth pressure coefficient in the subarea using the trace line of minor principal stress of circular arc after stress deflection. The soil layers at the top and bottom part of the retaining wall are restrained when the drum deformation occurs, and the soil layers are in a non-limit state. The linear relationship between the wall movement’s magnitude and the mobilization of the internal friction angle and the wall friction anger is presented. The level layer analysis method is modified to propose the resultant force of active earth pressure, the action point’s height, and the pressure distribution. Model tests are carried out to emulate the process of drum deformation and soil rupture with limited width. Through image analysis, it is found that the failure angle of soil within the limited width is larger than that of infinite soil. With the increase of the aspect ratio, the failure angle gradually reduces and tends to be constant. Compared with the test results, it is showed that the horizontal earth pressure reduces with the reduction of the aspect ratio within critical width, and the resultant force decreases with the increase of the limit state region under the same ratio. The middle part of the distribution curve is concave. The active earth pressure strength decreases less than Coulomb’s value, the upper and lower soil layers are in the non-limit state, and the active earth pressure strength is more than Coulomb’s value.


2020 ◽  
Vol 3 (3) ◽  
pp. 923
Author(s):  
Amelinda Jocelin ◽  
Chaidir Anwar Makarim

Construction failure may occur due to various things. One of them is used a shallow foundation for a retaining wall. It can possible, but consider environmental condition where there is a heavy flow of water along the wall. Therefore it is necessary to use a deep foundation. Pile are printed concrete products. It is used to support a load and distribute the load to the subgrade. This pile is also equipped with iron reinforcement so that it can guarantee the quality and strength. This calculation is using a closed-form solution. The software used is P-Y Wall which fixes a flexible retaining wall or pile/drill wall. This program will calculate pile deflection, shear forces, and bending moments. In this assessment, variations were made relating to the distance between the piles and the values of L1 and L2. L1 shows the free long pile and L2 shows the long pile entering the ground. Variation 3A with the distance between the piles 100 cm and the length of the pile 15 m. The average value of L1 was 10.8 m for the value and the value of L2 was 4.2 m. Both of deflection and moment can fulfill the qualification, the value is 9,1 m (from 10,8 m) dan 320 kNm (from 399 kN/m).


Sign in / Sign up

Export Citation Format

Share Document