Probabilistic FEM-Analysis for the Retaining Wall of a Deep Excavation at SLS

Author(s):  
Alexandra Ene ◽  
Timo Schweckendiek ◽  
Horatiu Popa
2012 ◽  
Vol 188 ◽  
pp. 60-65
Author(s):  
Fu Lin Li ◽  
Fang Le Peng

The combined effects of the rate-dependent behavior of both the backfill soil and the geosynthetic reinforcement have been investigated, which should be attributed to the viscous property of material. A nonlinear finite element method (FEM) analysis procedure based on the Dynamic Relaxation method was developed for the geosynthetic-reinforced soil retaining wall (GRS-RW). In the numerical analysis, both the viscous properties of the backfill and the reinforcement were considered through the unified nonlinear three-component elastic-viscoplastic model. The FEM procedure was validated against a physical model test on geosynthetic-reinforced soil retaining wall with granular backfill. Extensive finite-element analyses were carried out to investigate the tensile force distributions in geosynthetic reinforcement of geosynthetic-reinforced soil retaining wall under the change of loading rate. It is found from the analyses that the presented FEM can well simulate the rate-dependent behavior of geosynthetic-reinforced soil retaining wall and the tensile force of geosynthetic reinforcement arranged in retaining wall.


ce/papers ◽  
2018 ◽  
Vol 2 (2-3) ◽  
pp. 743-748
Author(s):  
Horatiu POPA ◽  
Alexandra ENE ◽  
Roxana MIRITOIU ◽  
Ionela IONESCU ◽  
Dragos MARCU

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m


Author(s):  
V. V. Ruchkivskyi

The results of work research of engineering protective structures in a densely built–up area with difficult engineering–geological conditions have been presented. The modeling of the geotechnical problem of deep excavation protection using a three-tier retaining wall has been performed.  The task of mutual influence of existing building and deep excavation with the change of distance between them is solved. The grafs of displacement’s dependence several tiers of retaining walls from the distance to an existing building have been presented. According to these data, a plot of the dependence of displacements of separate tiers of retaining walls from the distance to an existing building is constructed. The problem is solved by the finite element method using a nonlinear model of a solid soil environment. The character of the formation of zones of potential slip surface slope is revealed. The dependence of bending moments of the retaining walls from the distance to the existing building is shown. A safe location of an existing building to a deep excavation has been substinated.


2017 ◽  
pp. 419-422
Author(s):  
M.T. Liang ◽  
C.F. Hsiao ◽  
K.Y. Chang ◽  
L.C. Chuang ◽  
J.C. Chang

2012 ◽  
Vol 170-173 ◽  
pp. 13-19
Author(s):  
Shong Loong Chen ◽  
Cheng Tao Ho

Deep excavations in soft-clay layer on sloped bedrock often leads to lateral displacement on retaining structures and uneven settlement due to unbalanced pressure generated from excavation. A construction project for which an excavation was complete in soft clay layer on sloped bedrock in Taipei City was adopted in the study. It is learned from the observation logs of the studied case that a significant difference exists in the lateral displacement of diaphragm wall and settlement between up and down-slope sides of sloped bedrock. Deep excavation is in fact profoundly complicated interaction between excavation strutting and soil. In general practice, the design of excavation is frequently simplified as a 2D strain behavior. However, the actual excavation on sloped bedrock is quite different from 1D or 2D simulation in a symmetric manner. Therefore, 2D finite element analysis program, PLAXIS, is introduced for the analysis on the behaviors of soil clay layer on sloped bedrock in excavation. The result is compared with onsite observation data, including displacement of retaining wall, settlement, axial loads of struts and others. The result of retaining wall displacement analysis is found consistent with the trend derived from onsite observation, which is possible for reference of similar engineering analyses and designs in the future.


Sign in / Sign up

Export Citation Format

Share Document