scholarly journals The stability of the Corrugated Concrete Sheet Pile (CCSP) of the Soil Retaining Wall at the Abutmen Bridge Bh 1751 in Lok Ulo District, Kebumen

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m

2013 ◽  
Vol 353-356 ◽  
pp. 312-317
Author(s):  
Ying Yong Li ◽  
Li Zhi Zheng ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Zhi Chao Xue

In order to ensure the security of gravity retaining wall in the high fill subgrade, the design of gravity retaining wall with anchors is proposed,the characteristic of the new wall is that comment anchors are added to the traditional gravity retaining wall,by friction anchors provide lateral pull to the wall so the stability of the new wall is improved. Because of the constraints of anchors, the lateral free deformation is influenced and the soil pressure distribution is very complicated, field tests showed that soil pressure distribution is nonlinear and pressure concentrate in anchoring position. In order to reveal the supporting mechanism of retaining wall and propose the soil pressure formula, the model test of anchor retaining wall is made and numerical simulation is done. The results show that soil pressure appears incresent above the anchor and decreasing below the anchor, the soil pressre also grew larger away from the anchor proximal in the horizontal direction.


2019 ◽  
Vol 4 (2) ◽  
pp. 15
Author(s):  
Nimbalkar ◽  
Pain ◽  
Ahmad ◽  
Chen

An accurate estimation of static and seismic earth pressures is extremely important in geotechnical design. The conventional Coulomb’s approach and Mononobe-Okabe’s approach have been widely used in engineering practice. However, the latter approach provides the linear distribution of seismic earth pressure behind a retaining wall in an approximate way. Therefore, the pseudo-dynamic method can be used to compute the distribution of seismic active earth pressure in a more realistic manner. The effect of wall and soil inertia must be considered for the design of a retaining wall under seismic conditions. The method proposed considers the propagation of shear and primary waves through the backfill soil and the retaining wall due to seismic excitation. The crude estimate of finding the approximate seismic acceleration makes the pseudo-static approach often unreliable to adopt in the stability assessment of retaining walls. The predictions of the active earth pressure using Coulomb theory are not consistent with the laboratory results to the development of arching in the backfill soil. A new method is proposed to compute the active earth pressure acting on the backface of a rigid retaining wall undergoing horizontal translation. The predictions of the proposed method are verified against results of laboratory tests as well as the results from other methods proposed in the past.


Author(s):  
Patrick Wilson ◽  
Ahmed Elgamal

During strong seismic excitation, passive earth pressure at the abutments may provide resistance to longitudinal displacement of the bridge deck. The dynamic pressure component may also contribute to undesirable abutment movement or damage. Current uncertainty in the passive force-displacement relationship and in the dynamic response of abutment backfills continues to motivate large-scale experimentation. In this regard, a test series is conducted to measure static and dynamic lateral earth pressure on a 1.7 meter high bridge abutment wall. Built in a large soil container, the wall is displaced horizontally into the dense sand backfill, in order to record the passive force-displacement relationship. The wall-backfill system is also subjected to shake table excitation. In the conducted tests, lateral earth pressure on the wall remained close to the static value during the low to moderate shaking events (up to about 0.5g). At higher levels of input acceleration, a substantial portion of the backfill inertial force started to clearly act on the wall.


2013 ◽  
Vol 477-478 ◽  
pp. 596-599
Author(s):  
Jian Qing Wu ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Yi Fan Yu ◽  
Chao Li

With the highway subgrade fill increasing, traditional retaining wall cannot meet the requirements for supporting. To meet this requirement, the prestressed opposite-pull retaining wall was put forward. Due to the anchor pull of the new-style retaining wall, its bearing capacity was enhanced, but the stress is not clear. In order to reveal the stress distribution of the prestressed opposite-pull retaining wall, FLAC3D was adept to do numerical simulation on the new-style retaining wall. It simulated three conditions of the wall with no anchor, with anchor but without prestress and with prestressed anchor. The results showed that, after the layout of prestressed anchor, the lateral earth pressure of the region near the anchor increased with the increase of prestress, the lateral earth pressure of the wall is parabola distribution. The lateral earth pressure was larger than that of the wall with no anchor and with anchor but without prestress. The bearing capacity of the retaining wall was effectively improved.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012030
Author(s):  
Jayesh Harode ◽  
Kuldeep Dabhekar ◽  
P.Y. Pawade ◽  
Isha Khedikar

Abstract It is now becoming very essential to analyse the behaviour of retaining structures due to their wide infrastructural applications. The important factors which are affecting the stability of the retaining wall are the distribution of earth pressure on the wall, material of backfill & its reaction against earth pressure. There are several types of retaining walls, out of them the cantilever retaining wall is adopted for present design and study. In this paper, the study of literature based on the design of the cantilever retaining walls under seismic or dynamic conditions is studied. From the studied literature, many authors performed their calculations in Excel sheets by a manual method. Then the Results obtained from the manual calculation are then validated in STAAD pro. Several authors show the calculated quantity of steel and concrete required for various heights of walls. It is also concluded from the study that the design of cantilever retaining wall is suitable, safe, and economical up to a height of 6m, after that banding moment at toe increases. Some authors have also shown the calculated factor of safety for different height conditions. From the study of mentioned literature, we can recommended to also show the graph of bending moment with height variation. Both the designs are done for various heights ranging from 3 m to 6 m.


Sign in / Sign up

Export Citation Format

Share Document