Design of scour protections and structural reliability techniques

Author(s):  
Tiago Fazeres-Ferradosa ◽  
Francisco Taveira-Pinto ◽  
Luciana Neves ◽  
Maria Reis
2019 ◽  
Vol 12 (1) ◽  
pp. 56-62 ◽  
Author(s):  
A. O. Nedosekin ◽  
A. V. Smirnov ◽  
D. P. Makarenko ◽  
Z. I. Abdoulaeva

The article presents new models and methods for estimating the residual service life of an autonomous energy system, using the functional operational risk criterion (FOR). The purpose of the article is to demonstrate a new method of durability evaluation using the fuzzy logic and soft computing framework. Durability in the article is understood as a complex property directly adjacent to the complex property of system resilience, as understood in the Western practice of assessing and ensuring the reliability of technical systems. Due to the lack of reliable homogeneous statistics on system equipment failures and recoveries, triangular fuzzy estimates of failure and recovery intensities are used as fuzzy functions of time based on incomplete data and expert estimates. The FOR in the model is the possibility for the system availability ratio to be below the standard level. An example of the evaluation of the FOR and the residual service life of a redundant cold supply system of a special facility is considered. The transition from the paradigm of structural reliability to the paradigm of functional reliability based on the continuous degradation of the technological parameters of an autonomous energy system is considered. In this case, the FOR can no longer be evaluated by the criterion of a sudden failure, nor is it possible to build a Markov’s chain on discrete states of the technical system. Assuming this, it is appropriate to predict the defi ning functional parameters of a technical system as fuzzy functions of a general form and to estimate the residual service life of the technical system as a fuzzy random variable. Then the FOR is estimated as the possibility for the residual life of the technical system to be below its warranty period, as determined by the supplier of the equipment.


2020 ◽  
Vol 92 (6) ◽  
pp. 51-58
Author(s):  
S.A. SOLOVYEV ◽  

The article describes a method for reliability (probability of non-failure) analysis of structural elements based on p-boxes. An algorithm for constructing two p-blocks is shown. First p-box is used in the absence of information about the probability distribution shape of a random variable. Second p-box is used for a certain probability distribution function but with inaccurate (interval) function parameters. The algorithm for reliability analysis is presented on a numerical example of the reliability analysis for a flexural wooden beam by wood strength criterion. The result of the reliability analysis is an interval of the non-failure probability boundaries. Recommendations are given for narrowing the reliability boundaries which can reduce epistemic uncertainty. On the basis of the proposed approach, particular methods for reliability analysis for any structural elements can be developed. Design equations are given for a comprehensive assessment of the structural element reliability as a system taking into account all the criteria of limit states.


1984 ◽  
Author(s):  
S. M. Wiederhorn ◽  
N. J. Tighe ◽  
T. J. Chuang ◽  
K. A. Hardman-Rhyne ◽  
B. J. Hockey

2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


2021 ◽  
Author(s):  
Yan‐Gang Zhao ◽  
Zhao‐Hui Lu

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Mahdi Shadabfar ◽  
Cagri Gokdemir ◽  
Mingliang Zhou ◽  
Hadi Kordestani ◽  
Edmond V. Muho

This paper presents a review of the existing models for the estimation of explosion-induced crushed and cracked zones. The control of these zones is of utmost importance in the rock explosion design, since it aims at optimizing the fragmentation and, as a result, minimizing the fine grain production and recovery cycle. Moreover, this optimization can reduce the damage beyond the set border and align the excavation plan with the geometric design. The models are categorized into three groups based on the approach, i.e., analytical, numerical, and experimental approaches, and for each group, the relevant studies are classified and presented in a comprehensive manner. More specifically, in the analytical methods, the assumptions and results are described and discussed in order to provide a useful reference to judge the applicability of each model. Considering the numerical models, all commonly-used algorithms along with the simulation details and the influential parameters are reported and discussed. Finally, considering the experimental models, the emphasis is given here on presenting the most practical and widely employed laboratory models. The empirical equations derived from the models and their applications are examined in detail. In the Discussion section, the most common methods are selected and used to estimate the damage size of 13 case study problems. The results are then utilized to compare the accuracy and applicability of each selected method. Furthermore, the probabilistic analysis of the explosion-induced failure is reviewed using several structural reliability models. The selection, classification, and discussion of the models presented in this paper can be used as a reference in real engineering projects.


Sign in / Sign up

Export Citation Format

Share Document