scholarly journals White Matter Tract Visualization in Infants by Diffusion Tensor MRI(Magnetic Resonance Imaging)

1998 ◽  
Vol 44 (3) ◽  
pp. 447-447
Author(s):  
M J Miranda ◽  
P Born ◽  
M R Wiegell
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Allen A Champagne ◽  
Emile Peponoulas ◽  
Itamar Terem ◽  
Andrew Ross ◽  
Maryam Tayebi ◽  
...  

Abstract Increasing evidence for the cumulative effects of head trauma on structural integrity of the brain has emphasized the need to understand the relationship between tissue mechanic properties and injury susceptibility. Here, diffusion tensor imaging, helmet accelerometers and amplified magnetic resonance imaging were combined to gather insight about the region-specific vulnerability of the corpus callosum to microstructural changes in white-matter integrity upon exposure to sub-concussive impacts. A total of 33 male Canadian football players (meanage = 20.3 ± 1.4 years) were assessed at three time points during a football season (baseline pre-season, mid-season and post-season). The athletes were split into a LOW (N = 16) and HIGH (N = 17) exposure group based on the frequency of sub-concussive impacts sustained on a per-session basis, measured using the helmet-mounted accelerometers. Longitudinal decreases in fractional anisotropy were observed in anterior and posterior regions of the corpus callosum (average cluster size = 40.0 ± 4.4 voxels; P < 0.05, corrected) for athletes from the HIGH exposure group. These results suggest that the white-matter tract may be vulnerable to repetitive sub-concussive collisions sustained over the course of a football season. Using these findings as a basis for further investigation, a novel exploratory analysis of strain derived from sub-voxel motion of brain tissues in response to cardiac impulses was developed using amplified magnetic resonance imaging. This approach revealed specific differences in strain (and thus possibly stiffness) along the white-matter tract (P < 0.0001) suggesting a possible signature relationship between changes in white-matter integrity and tissue mechanical properties. In light of these findings, additional information about the viscoelastic behaviour of white-matter tissues may be imperative in elucidating the mechanisms responsible for region-specific differences in injury susceptibility observed, for instance, through changes in microstructural integrity following exposure to sub-concussive head impacts.


2020 ◽  
Vol 21 (23) ◽  
pp. 8891
Author(s):  
Robert Galinsky ◽  
Yohan van de Looij ◽  
Natasha Mitchell ◽  
Justin M. Dean ◽  
Simerdeep K. Dhillon ◽  
...  

Progressive fetal infection/inflammation is strongly associated with neural injury after preterm birth. We aimed to test the hypotheses that progressively developing fetal inflammation leads to neuroinflammation and impaired white matter development and that the histopathological changes can be detected using high-field diffusion tensor magnetic resonance imaging (MRI). Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive intravenous saline (control; n = 6) or a progressive infusion of lipopolysaccharide (LPS, 200 ng intravenous over 24 h then doubled every 24 h for 5 days to induce fetal inflammation, n = 7). Sheep were killed 10 days after starting the infusions, for histology and high-field diffusion tensor MRI. Progressive LPS infusion was associated with increased circulating interleukin (IL)-6 concentrations and moderate increases in carotid artery perfusion and the frequency of electroencephalogram (EEG) activity (p < 0.05 vs. control). In the periventricular white matter, fractional anisotropy (FA) was increased, and orientation dispersion index (ODI) was reduced (p < 0.05 vs. control for both). Histologically, in the same brain region, LPS infusion increased microglial activation and astrocyte numbers and reduced the total number of oligodendrocytes with no change in myelination or numbers of immature/mature oligodendrocytes. Numbers of astrocytes in the periventricular white matter were correlated with increased FA and reduced ODI signal intensities. Astrocyte coherence was associated with increased FA. Moderate astrogliosis, but not loss of total oligodendrocytes, after progressive fetal inflammation can be detected with high-field diffusion tensor MRI.


2003 ◽  
Vol 182 (5) ◽  
pp. 439-443 ◽  
Author(s):  
J. Burns ◽  
D. Job ◽  
M. E. Bastin ◽  
H. Whalley ◽  
T. Macgillivray ◽  
...  

BackgroundThere is growing evidence that schizophrenia is a disorder of cortical connectivity Specifically, frontotemporal and frontoparietal connections are thought to be functionally impaired. Diffusion tensor magnetic resonance imaging (DT–MRI) is a technique that has the potential to demonstrate structural disconnectivity in schizophrenia.AimsTo investigate the structural integrity of frontotemporal and frontoparietal white matter tracts in schizophrenia.MethodThirty patients with DSM–IV schizophrenia and thirty matched control subjects underwent DT–MRI and structural MRI. Fractional anisotropy – an index of the integrity of white matter tracts – was determined in the uncinate fasciculus, the anterior cingulum and the arcuate fasciculus and analysed using voxel-based morphometry.ResultsThere was reduced fractional anisotropy in the left uncinate fasciculus and left arcuate fasciculus in patients with schizophrenia compared with controls.ConclusionsThe findings of reduced white matter tract integrity in the left uncinate fasciculus and left arcuate fasciculus suggest that there is frontotemporal and frontoparietal structural disconnectivity in schizophrenia.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S436-S443 ◽  
Author(s):  
Andrew K Conner ◽  
Robert G Briggs ◽  
Goksel Sali ◽  
Meherzad Rahimi ◽  
Cordell M Baker ◽  
...  

ABSTRACT The inferior fronto-occipital fasciculus (IFOF) is a large white matter tract of the human cerebrum with functional connectivity associated with semantic language processing and goal-oriented behavior. However, little is known regarding the overall connectivity of this tract. Recently, the Human Connectome Project parcellated the human cortex into 180 distinct regions. In our other work, we have shown these various regions in relation to clinically applicable anatomy and function. Utilizing Diffusion Spectrum Magnetic Resonance Imaging tractography coupled with the human cortex parcellation data presented earlier in this supplement, we aim to describe the macro-connectome of the IFOF in relation to the linked parcellations present within the human cortex. The purpose of this study is to present this information in an indexed, illustrated, and tractographically aided series of figures and tables for anatomic and clinical reference.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S407-S422 ◽  
Author(s):  
Andrew K Conner ◽  
Robert G Briggs ◽  
Meherzad Rahimi ◽  
Goksel Sali ◽  
Cordell M Baker ◽  
...  

ABSTRACT The superior longitudinal fasciculus/arcuate white matter complex (SLF/AC) is the largest and most complex white matter tract of the human cerebrum with multiple inter-linked connections encompassing multiple cognitive functions such as language, attention, memory, emotion, and visuospatial function. However, little is known regarding the overall connectivity of this complex. Recently, the Human Connectome Project parcellated the human cortex into 180 distinct regions. Utilizing diffusion spectrum magnetic resonance imaging tractography coupled with the human cortex parcellation data presented earlier in this supplement, we aim to describe the macro-connectome of the SLF/AC in relation to the linked parcellations present within the human cortex. The purpose of this study is to present this information in an indexed, illustrated, and tractographically aided series of figures and tables for anatomic and clinical reference.


Sign in / Sign up

Export Citation Format

Share Document