scholarly journals Redshift dependence of CMB temperature in BSBM α-varying theories

2021 ◽  
Vol 134 (4) ◽  
pp. 49002
Author(s):  
Yousef Bisabr
Keyword(s):  
2008 ◽  
Vol 23 (17n20) ◽  
pp. 1489-1497 ◽  
Author(s):  
LUNG-YIH CHIANG ◽  
PAVEL D. NASELSKY ◽  
PETER COLES

Low quadrupole power in the cosmic microwave background (CMB) temperature anisotropies has been a puzzle since WMAP data release. In this talk I will demonstrate that the minimum variance optimization (MVO), a methodology used by many authors including the WMAP science team to separate the CMB from foreground contamination, serves not only to extract the CMB, but to subtract the “cosmic covariance”, an intrinsic correlation between the CMB and the foregrounds. Such subtraction induces low variance in the signal via MVO, which in turn propagates into the multipoles, causing a quadrupole deficit with more than 90% CL. As we do not know the CMB and the foregrounds a priori, and their correlation is subtracted by the MVO in any case, there is therefore an unknown error in the quadrupole power even before the cosmic variance interpretation. We combine the MVO and Monte Carlo simulations, assuming CMB is a Gaussian random field, and the estimated quadrupole power falls in [308.13, 401.97] μ K 2 (at 1 − σ level).


2010 ◽  
Vol 43 (4) ◽  
pp. 1083-1093 ◽  
Author(s):  
Philippe Jetzer ◽  
Denis Puy ◽  
Monique Signore ◽  
Crescenzo Tortora

2014 ◽  
Vol 90 (6) ◽  
Author(s):  
Silvia Galli ◽  
Karim Benabed ◽  
François Bouchet ◽  
Jean-François Cardoso ◽  
Franz Elsner ◽  
...  

Cosmology ◽  
2017 ◽  
pp. 279-308
Author(s):  
Nicola Vittorio

2003 ◽  
pp. 414-420
Author(s):  
Radek Stompor ◽  
Amedeo Balbi ◽  
Julian Borrill ◽  
Pedro Ferreira ◽  
Shaul Hanany ◽  
...  

1990 ◽  
Vol 139 ◽  
pp. 390-391
Author(s):  
M. E. Kaiser ◽  
E. L. Wright

We present moderate to high signal-to-noise high-resolution (R ≈ 150,000–170,000) optical spectra toward ζ Oph. Gaussian fits to our data indicate a value of the line-width parameter b, of b = 1.4 ± 0.2 km s−1, along this line of sight. When CN is used as an indirect probe of the cosmic microwave background (CMB) temperature, the line profile is used to determine saturation corrections in the line. This affects column density calculations, which are reflected in the excitation temperature. Current measurements of the b-value along this line of sight range from 0.88 ± 0.02 km s−1 (Crane et al. 1986) to 1.3 ± 0.1 km s−1 (Hegyi, Traub, and Carleton 1972). The extreme range of these b-values yield saturation corrections to the CMB temperature that differ by 0.05 K, which is equal to the quoted precision of current measurements. Preliminary analysis of observations toward HD 29647 indicate that TCMB = 2.70 ± 0.14 K at 2.64 mm toward this line of sight.


2019 ◽  
Vol 490 (3) ◽  
pp. 4419-4427 ◽  
Author(s):  
Shohei Saga ◽  
Atsuhisa Ota ◽  
Hiroyuki Tashiro ◽  
Shuichiro Yokoyama

ABSTRACT Spatially fluctuating primordial magnetic fields (PMFs) inhomogeneously reheat the Universe when they dissipate deep inside the horizon before recombination. Such an energy injection turns into an additional photon temperature perturbation. We investigate secondary cosmic microwave background (CMB) temperature anisotropies originated from this mechanism, which we call inhomogeneous magnetic reheating. We find that it can bring us information about non-linear coupling between PMFs and primordial curvature perturbations parametrized by bNL, which should be important for probing the generation mechanism of PMFs. In fact, by using current CMB observations, we obtain an upper bound on the non-linear parameter as log (bNL(Bλ/nG)2) ≲ − 36.5nB − 94.0 with Bλ and nB being a magnetic field amplitude smoothed over λ = 1 Mpc scale and a spectral index of the PMF power spectrum, respectively. Our constraints are far stronger than a previous forecast based on the future CMB spectral distortion anisotropy measurements because inhomogeneous magnetic reheating covers a much wider range of scales, i.e. 1 Mpc−1 ≲ k ≲ 1015 Mpc−1.


Sign in / Sign up

Export Citation Format

Share Document