No contributions to the extremal–black-hole entropy from spin fields

2009 ◽  
Vol 85 (6) ◽  
pp. 60009
Author(s):  
Li-Qin Mi
2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Tatsuo Azeyanagi ◽  
Tatsuma Nishioka ◽  
Tadashi Takayanagi

1995 ◽  
Vol 10 (28) ◽  
pp. 2081-2093 ◽  
Author(s):  
ASHOKE SEN

Some of the extremal black hole solutions in string theory have the same quantum numbers as the Bogomol’nyi saturated elementary string states. We explore the possibility that these black holes can be identified with elementary string excitations. It is shown that stringy effects could correct the Bekenstein-Hawking formula for the black hole entropy in such a way that it correctly reproduces the logarithm of the density of elementary string states. In particular, this entropy has the correct dependence on three independent parameters, the mass and the left-handed charge of the black hole, and the string coupling constant.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2229-2230
Author(s):  
TATSUO AZEYANAGI

We holographically derive entropy of (near) extremal black holes as entanglement entropy of conformal quantum mechanics(CQM) living in two boundaries of AdS2.


1997 ◽  
Vol 12 (29) ◽  
pp. 5223-5234 ◽  
Author(s):  
Sang Pyo Kim ◽  
Sung Ku Kim ◽  
Kwang-Sup Soh ◽  
Jae Hyung Yee

We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner–Nordström black hole by using the Pauli–Villars regularization method, in which the regulator fields obey either the Bose–Einstein or Fermi–Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.


2014 ◽  
Vol 29 (13) ◽  
pp. 1450079
Author(s):  
Jun-Jin Peng ◽  
Qing-Ping Hu

We study microscopic entropy of the near-extremal rotating black hole in four-dimensional (4D) 𝒩 = 2 supergravity with four charges set pairwise equal from AdS2/CFT1 correspondence. This correspondence is realized in terms of asymptotic symmetries of the AdS2 geometry and a two-dimensional near-horizon effective quantum theory of residual fields from a dimensional reduction proposed by Robinson and Wilczek. We compute the relevant central charge and derive the microscopic entropy of this near-extremal black hole by Cardy formula. Our results can be extended to more general near-extremal rotating black holes in 4D supergravity. They further support the notion that black hole entropy is generally controlled by near-horizon conformal symmetry.


Sign in / Sign up

Export Citation Format

Share Document