Abstract
Interaction of sulphone based reactive dyes, designated as dye-1 and dye-2, with cationic micellar system of cetyltrimethylammonium bromide (CTAB), has been investigated by spectroscopic and conductometeric measurements. Efficiency of the selected micellar systems is assessed by the values of binding constant (K
b
), partition coefficient (K
x
) and respective Gibbs energies. Critical micelle concentration (CMC) of surfactant, electrostatic and hydrophobic interactions as well as polarity of the medium plays significant role in this phenomenon. The negative values of Gibbs energies of binding (∆G
b
) and partition (∆G
p
) predicts the feasibility and spontaneity of respective processes. Similarly negative values of ∆G
m
and ∆H
m
and positive values of ∆S
m
, calculated from conductometeric data, further, revealed the exothermicity, spontaneity and, thus, stability of system. The results, herein, have disclosed the strong interaction between dye and surfactant molecules. The dye-2 has been observed to be solubilized to greater extent, as compared to dye 1, due to strong interaction ith hydrophiles of CTAB and accommodation of its molecules in palisade layer of micelle closer to the micelle/water interface.