LncRNA LPAL2/miR-1287-5p/EGFR axis modulates TED derived orbital fibroblast activation through cell adhesion factors

Author(s):  
Nuo Wang ◽  
Shi-ying Hou ◽  
Xin Qi ◽  
Mi Deng ◽  
Jia-min Cao ◽  
...  

Abstract Background and aims The activation of orbital fibroblasts, the prime targets in thyroid eye disease, is central to its underlying pathogenesis. We aimed to investigate the mechanism of thyroid eye disease orbital fibroblast activation from the perspective of non-coding RNA regulation. Methods Immunofluorescence (IF) staining was applied to evaluate the fibrotic changes in target cells. Cell proliferation were evaluated by EDU and colony formation assays. Collagen I concentration was determined by ELISA assay. Human microarray analysis was performed on three thyroid eye disease and 3 healthy control orbital tissue samples. Results Bioinformatics analysis showed that cell adhesion signaling factors were differentially expressed in thyroid eye disease tissues, including I-CAM-1, I-CAM-4, V-CAM, and CD44, which were all upregulated in diseased orbital tissues. LncRNA LPAL2 level was also upregulated in orbital tissues and positively correlated with I-CAM-1 and I-CAM-4 expression. Stimulation of the thyroid eye disease orbital fibroblasts by TGF-β1 significantly increased the expression of I-CAM-1, I-CAM-4, and LPAL2. Knockdown of LPAL2 in orbital fibroblasts inhibited TGF-β1-induced increases in cell adhesion factor levels and orbital fibroblast activation. Microarray profiling was performed on thyroid eye disease and normal orbital tissues to identify differentially expressed miRNAs and miR-1287-5p was remarkably reduced within diseased orbital samples. miR-1287-5p was directly bound to EGFR 3’UTR and LPAL2 and LPAL2 modulated EGFR/AKT signaling through targeting miR-1287-5p. Conclusions The LPAL2/miR-1287-5p axis modulated TGF-β1-induced increases in cell adhesion factor levels and thyroid eye disease orbital fibroblast activation through EGFR/AKT signaling.

Author(s):  
Christine C Krieger ◽  
Xiangliang Sui ◽  
George J Kahaly ◽  
Susanne Neumann ◽  
Marvin C Gershengorn

Abstract Context We previously presented evidence that TSH receptor (TSHR)-stimulating autoantibodies (TSAbs) bind to and activate TSHRs but do not bind to IGF1 receptors (IGF1Rs). Nevertheless, we showed that IGF1Rs were involved in thyroid eye disease (TED) pathogenesis because TSAbs activated crosstalk between TSHR and IGF1R. Teprotumumab, originally generated to inhibit IGF1 binding to IGF1R, was recently approved for the treatment of TED (Tepezza®). Objective To investigate the role of TSHR/IGF1R crosstalk in teprotumumab treatment of TED. Design We used orbital fibroblasts from patients with TED (TEDOFs) and measured stimulated hyaluronan (HA) secretion as a measure of orbital fibroblast activation by TED immunoglobulins (TED-Igs) and monoclonal TSAb M22. We previously showed that M22, which does not bind to IGF1R, stimulated HA in a biphasic dose-response with the higher-potency phase dependent on TSHR/IGF1R crosstalk and the lower-potency phase independent of IGF1R. Stimulation by TED-Igs and M22 was measured in the absence or presence of Teprotumumab Biosimilar (Tepro) or K1-70, an antibody that inhibits TSHR. Results We show: 1) Tepro dose-dependently inhibits stimulation by TED-Igs; 2) Tepro does not bind to TSHRs; 3) Tepro inhibits IGF1R-dependent M22-induced HA production, which is mediated by TSHR/IGF1R crosstalk, but not IGF1R-independent M22 stimulation; and 4) β-arrestin 1 knockdown, which blocks TSHR/IGF1R crosstalk, prevents Tepro inhibition of HA production by M22 and by a pool of TED-Igs. Conclusion We conclude that Tepro inhibits HA production by TEDOFs by inhibiting TSHR/IGF1R crosstalk and suggest that inhibition of TSHR/IGF1R crosstalk is the mechanism of its action in treating TED.


2018 ◽  
Vol 12 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Bradford W. Lee ◽  
Virender B. Kumar ◽  
Pooja Biswas ◽  
Audrey C. Ko ◽  
Ramzi M. Alameddine ◽  
...  

Objective: This study utilized Next Generation Sequencing (NGS) to identify differentially expressed transcripts in orbital adipose tissue from patients with active Thyroid Eye Disease (TED) versus healthy controls. Method: This prospective, case-control study enrolled three patients with severe, active thyroid eye disease undergoing orbital decompression, and three healthy controls undergoing routine eyelid surgery with removal of orbital fat. RNA Sequencing (RNA-Seq) was performed on freshly obtained orbital adipose tissue from study patients to analyze the transcriptome. Bioinformatics analysis was performed to determine pathways and processes enriched for the differential expression profile. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) was performed to validate the differential expression of selected genes identified by RNA-Seq. Results: RNA-Seq identified 328 differentially expressed genes associated with active thyroid eye disease, many of which were responsible for mediating inflammation, cytokine signaling, adipogenesis, IGF-1 signaling, and glycosaminoglycan binding. The IL-5 and chemokine signaling pathways were highly enriched, and very-low-density-lipoprotein receptor activity and statin medications were implicated as having a potential role in TED. Conclusion: This study is the first to use RNA-Seq technology to elucidate differential gene expression associated with active, severe TED. This study suggests a transcriptional basis for the role of statins in modulating differentially expressed genes that mediate the pathogenesis of thyroid eye disease. Furthermore, the identification of genes with altered levels of expression in active, severe TED may inform the molecular pathways central to this clinical phenotype and guide the development of novel therapeutic agents.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Masatoshi Narikawa ◽  
Masanari Umemura ◽  
Ryo Tanaka ◽  
Takayuki Fujita ◽  
Utako Yokoyama ◽  
...  

2020 ◽  
Vol 9 (Suppl. 1) ◽  
pp. 59-65
Author(s):  
Susanne Neumann ◽  
Christine C. Krieger ◽  
Marvin C. Gershengorn

Graves’ disease (GD) is an autoimmune disease caused in part by thyroid-stimulating antibodies (TSAbs) that activate the thyroid-stimulating hormone receptor (TSHR). In Graves’ hyperthyroidism (GH), TSAbs cause persistent stimulation of thyroid cells leading to continuous thyroid hormone synthesis and secretion. Thyroid eye disease (TED), also called Graves’ orbitopathy, is an orbital manifestation of GD. We review the important roles of the TSHR and the insulin-like growth factor 1 receptor (IGF-1R) in the pathogenesis of TED and discuss a model of TSHR/IGF-1R crosstalk that considers two pathways initiated by TSAb activation of TSHR in the eye, an IGF-1R-independent and an IGF-1R-dependent signaling pathway leading to hyaluronan (HA) secretion in orbital fibroblasts. We discuss current and future therapeutic approaches targeting the IGF-1R and TSHR. Teprotumumab, a human monoclonal anti-IGF-1R-blocking antibody, has been approved as an effective treatment in patients with TED. However, as the TSHR seems to be the primary target for TSAbs in patients with GD, future therapeutic interventions directly targeting the TSHR, e.g. blocking antibodies and small molecule antagonists, are being developed and have the advantage to inhibit the IGF-1R-independent as well as the IGF-1R-dependent component of TSAb-induced HA secretion. Antigen-specific immunotherapies using TSHR peptides to reduce serum TSHR antibodies are being developed also. These TSHR-targeted strategies also have the potential to treat both GH and TED with the same drug. We propose that combination therapy targeting TSHR and IGF-1R may be an effective and better tolerated treatment strategy for TED.


2013 ◽  
Vol 54 (12) ◽  
pp. 7370 ◽  
Author(s):  
Ajay E. Kuriyan ◽  
Collynn F. Woeller ◽  
Charles W. O'Loughlin ◽  
Richard P. Phipps ◽  
Steven E. Feldon

2021 ◽  
Vol 22 (20) ◽  
pp. 11225
Author(s):  
Pei-Wen Cheng ◽  
Pei-Jhen Tsai ◽  
Ming-Hong Tai ◽  
Youn-Shen Bee

Inflammation, hyaluronan production, and adipogenesis are the main pathological events leading to thyroid eye disease (TED). α-Melanocytemelanocyte-stimulating hormone (α-MSH) is a well-known tridecapeptidetreatment for several inflammatory disorders including sepsis syndrome, acute respiratory distress syndrome, rheumatoid arthritis, and encephalitis. Here, we investigated the effect of α-MSH treatment on TED. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Lactate Dehydrogenase (LDH) assays were performed to analyze the effect of α-MSH on cell viability and it’s toxicity. Using primary cultures of orbital fibroblasts from TED patients and non-TED as control, we examined the effects of α-MSH on proinflammatory cytokine production induced by interleukin (IL)-1β, further analyzed by real-time reverse transcription-polymerase chain reaction (qPCR) and western blotting. Immunofluorescence staining assay and qPCR were performed to examine proopiomelanocortin (POMC) expression, the upstream neuropeptide of α-MSH in TED patients and non-TED control. Treatment with non-cytotoxic concentrations of α-MSH resulted in the dose-dependent inhibition of mRNA and protein levels (p < 0.05) for IL-1β-induced inflammatory cytokines: IL-6, IL-8, MCP-1, ICAM-1, and COX-2. The expression of POMC mRNA and protein were significantly higher in TED patients compared to non-TED control (p < 0.05). Our data show significant inhibitory effects of α-MSH on inflammation, POMC production in orbital fibroblasts. At present, this is the first in vitro preclinical evidence of α-MSH therapeutic effect on TED. These findings indicate that POMC and α-MSH may play a role in the immune regulation of TED and can be a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document