scholarly journals Androgens Increase Gonadotropin-Releasing Hormone Neuron Firing Activity in Females and Interfere with Progesterone Negative Feedback

Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1474-1479 ◽  
Author(s):  
Justyna Pielecka ◽  
Samuel D. Quaynor ◽  
Suzanne M. Moenter

GnRH neurons are the central regulators of fertility, and their activity is modulated by steroid feedback. In women with hyperandrogenemic infertility and in animal models of these disorders, elevated androgen levels interfere with progesterone (P) negative feedback. Our previous work showed that steroids altered the frequency and amplitude of γ-aminobutyric acid (GABA) transmission to GnRH neurons. Specifically, P inhibited GABA transmission, which can excite GnRH neurons, whereas dihydrotestosterone (DHT) increased GABA transmission. In this study the GnRH neuron firing rate was examined in the same animal models. Adult (>2 months) female mice were ovariectomized and treated for 8–12 d with implants containing estradiol (E), E and P, E and DHT, or E, P, and DHT. Targeted extracellular recordings were used to examine the long-term firing activity of green fluorescent protein-identified GnRH neurons in brain slices from these mice. In comparing E alone to E plus P animals, P increased the percentage of time that GnRH neurons were quiescent and reduced the area under the curve of the firing rate and the instantaneous firing frequency, suggesting that P provides additional negative feedback over E alone. The addition of DHT markedly increased GnRH neuron activity in both the presence and absence of P. DHT also altered the firing pattern of GnRH neurons, such that peaks in the firing rate detected by the Cluster8 algorithm were approximately doubled in frequency and amplitude. These data support and extend our previous findings and are consistent with the hypothesis that the changes in GABAergic transmission observed in these animal models impact upon the activity of GnRH neurons, and central androgen action probably stimulates GnRH release.

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5374-5379 ◽  
Author(s):  
Suzanne M. Moenter ◽  
R. Anthony DeFazio

γ-Aminobutyric acid (GABA) provides a major synaptic input to GnRH neurons. GnRH neurons maintain high intracellular chloride levels and respond to exogenous GABA with depolarization and action potential firing. We examined the role of synaptic GABA type A receptor (GABAAR) activation on the firing activity of GnRH neurons. Targeted extracellular recordings were used to detect firing activity of GnRH neurons in brain slices from adult female mice. Because the brain slice preparation preserves both glutamatergic and GABAergic neuronal networks, the effects of GABAARs on GnRH neurons were isolated by blocking ionotropic glutamatergic receptors (iGluR). With iGluR blocked, many GnRH neurons remained spontaneously active. Consistent with an excitatory role for GABA, subsequent blockade of GABAARs suppressed the firing rate in active cells from diestrous females by approximately 40% (P < 0.05; n = 10). GABAAR blockade did not affect inactive cells (n = 7), indicating that GABAAR-mediated inhibition was not responsible for the lack of firing. In prenatally androgenized females, GnRH neurons exhibit larger, more frequent GABAergic postsynaptic currents than control females. Most cells from prenatally androgenized animals fired spontaneously, and the firing rate was suppressed approximately 80% after GABAAR blockade (P < 0.01; n = 8). Blocking GABAAR without blocking iGluRs increased the firing rate in GnRH neurons from diestrous females (P < 0.05; n = 6), perhaps attributable to hyperexcitability within the slice network. Our results indicate that GABAergic inputs help generate a portion of action potentials in GnRH neurons; this fraction depends on the level of GABA transmission and postsynaptic responsiveness. The complexities of the GnRH neuron response to GABA make this a potentially critical integration point for central regulation of fertility.


Endocrinology ◽  
2020 ◽  
Vol 161 (11) ◽  
Author(s):  
Chayarndorn Phumsatitpong ◽  
Rose M De Guzman ◽  
Damian G Zuloaga ◽  
Suzanne M Moenter

Abstract GnRH neurons are central regulators of reproduction and respond to factors affecting fertility, such as stress. Corticotropin-releasing hormone (CRH) is released during stress response. In brain slices from unstressed controls, CRH has opposite, estradiol-dependent effects on GnRH neuron firing depending on the CRH receptor activated; activating CRHR-1 stimulates whereas activating CRHR-2 suppresses activity. We investigated possible direct and indirect mechanisms. Mice were ovariectomized and either not treated further (OVX) or given a capsule producing high positive feedback (OVX + E) or low negative feedback (OVX + low E) physiologic circulating estradiol levels. We tested possible direct effects on GnRH neurons by altering voltage-gated potassium currents. Two types of voltage-gated potassium currents (transient IA and sustained IK) were measured; neither CRHR-1 nor CRHR-2 agonists altered potassium current density in GnRH neurons from OVX + E mice. Further, neither CRH nor receptor-specific agonists altered action potential generation in response to current injection in GnRH neurons from OVX + E mice. To test the possible indirect actions, GABAergic postsynaptic currents were monitored. A CRHR-1 agonist increased GABAergic transmission frequency to GnRH neurons from OVX + E, but not OVX, mice, whereas a CRHR-2 agonist had no effect. Finally, we tested if CRH alters the firing rate of arcuate kisspeptin neurons, which provide an important excitatory neuromodulatory input to GnRH neurons. CRH did not acutely alter firing activity of these neurons from OVX, OVX + E or OVX + low E mice. These results suggest CRH increases GnRH neuron activity in an estradiol-dependent manner in part by activating GABAergic afferents. Mechanisms underlying inhibitory effects of CRH remain unknown.


Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 728-735 ◽  
Author(s):  
Chun Xu ◽  
Xu-Zhi Xu ◽  
Craig S. Nunemaker ◽  
Suzanne M. Moenter

Abstract Pulsatile release of GnRH provides central control of reproduction. GnRH neuron activity is likely synchronized to produce hormone pulses, but the mechanisms are largely unknown. One candidate for communication among these neurons is GnRH itself. Cultured embryonic and immortalized GnRH neurons express GnRH receptor type I (GnRHR-1), but expression has not been shown in adult GnRH neurons. Using mice that express green fluorescent protein (GFP) in GnRH neurons, we tested whether adult GnRH neurons express GnRHR-1. GFP-positive (n = 42) and -negative neurons (n = 22) were harvested from brain slices, and single-cell RT-PCR was performed with cell contents. Fifty-two percent of the GnRH neurons tested expressed GnRHR-1, but only 9% of non-GnRH hypothalamic neurons expressed GnRHR-1; no false harvest controls (n = 13) were positive. GnRHR-1 expression within GnRH neurons suggested a physiological ultrashort loop feedback role for GnRH. Thus, we examined the effect of GnRH on the firing rate of GnRH neurons. Low-dose GnRH (20 nm) significantly decreased firing rate in 12 of 22 neurons (by 42 ± 4%, P < 0.05), whereas higher doses increased firing rate (200 nm, five of 10 neurons, 72 ± 26%; 2000 nm, nine of 13 neurons, 53 ± 8%). Interestingly, the fraction of GnRH neurons responding was similar to the fraction in which GnRHR-1 was detected. Together, these data demonstrate that a subpopulation of GnRH neurons express GnRHR-1 and respond to GnRH with altered firing. The dose dependence suggests that this autocrine control of GnRH neurons may be not only a mechanism for generating and modulating pulsatile release, but it may also be involved in the switch between pulse and surge modes of release.


Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Eden A Dulka ◽  
Laura L Burger ◽  
Suzanne M Moenter

Abstract Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.


Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 618-628 ◽  
Author(s):  
Alison V. Roland ◽  
Suzanne M. Moenter

Abstract Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.


Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 3130-3136 ◽  
Author(s):  
Catherine A. Christian ◽  
Suzanne M. Moenter

A surge of GnRH release signals the LH surge that triggers ovulation. The GnRH surge is dependent on a switch in estradiol feedback from negative to positive and, in rodents, a daily neural signal, likely from the suprachiasmatic nuclei. Vasoactive intestinal polypeptide (VIP) may be involved in suprachiasmatic nuclei-GnRH neuron communication. Here we assessed the effects of acute VIP (5 min treatment) on GnRH neuron function using targeted extracellular recordings of firing activity of GnRH neurons in brain slices. We examined the effect of VIP on firing rate at different times of day using an established ovariectomized, estradiol-treated (OVX+E) mouse model that exhibits daily LH surges timed to the late afternoon. Cells from OVX animals (no estradiol) did not respond to VIP, regardless of time of day. With estradiol, the effect of VIP on GnRH neurons was dependent on the time of recording. During negative feedback, OVX+E cells did not respond. VIP increased firing in cells recorded during surge onset, but this excitatory response was reduced at surge peak. Acute treatment of OVX+E cells during surge peak with a VIP receptor antagonist decreased GnRH neuron firing. This suggests endogenous VIP may both increase GnRH neuron firing during the surge and occlude response to exogenous VIP. These data provide functional evidence for VIP effects on GnRH neurons and indicate that both estradiol and time of day gate the GnRH neuron response to this peptide. VIP may provide an excitatory signal from the circadian clock that helps time the GnRH surge.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3850-3860 ◽  
Author(s):  
Garrett T. Gaskins ◽  
Suzanne M. Moenter

GnRH neurons are critical for the central regulation of fertility, integrating steroidal, metabolic and other cues. GnRH neurons appear to lack receptors for many of these cues, suggesting involvement of afferent systems to convey information. Orexin A (orexin) is of interest in this regard as a neuromodulator that up-regulates metabolic activity, increases wakefulness, and affects GnRH/LH release. We examined the electrophysiological response of GnRH neurons to orexin application and how this response changes with estradiol and time of day in a defined animal model. Mice were either ovariectomized (OVX) or OVX and implanted with estradiol capsules (OVX+E). GnRH neurons from OVX+E mice exhibit low firing rates in the morning, due to estradiol-negative feedback, and high firing rates in the evening, due to positive feedback. Orexin inhibited activity of GnRH neurons from OVX mice independent of time of day. In GnRH neurons from OVX+E mice, orexin was inhibitory during the evening, suggesting orexin inhibition is not altered by estradiol. No effect of orexin was observed in OVX+E morning recordings, due to low basal GnRH activity. Inhibitory effects of orexin were mediated by the type 1 orexin receptor, but antagonism of this receptor did not increase GnRH neuron activity during estradiol-negative feedback. Spike pattern analysis revealed orexin increases interevent interval by reducing the number of single spikes and bursts. Orexin reduced spikes/burst and burst duration but did not affect intraburst interval. This suggests orexin may reduce overall firing rate by suppressing spike initiation and burst maintenance in GnRH neurons.


2021 ◽  
Author(s):  
Amanda G Gibson ◽  
Jennifer Jaime ◽  
Laura L Burger ◽  
Suzanne M Moenter

Neuroendocrine control of reproduction is disrupted in many individuals with polycystic ovary syndrome, who present with increased luteinizing hormone (LH), and presumably gonadotropin-releasing hormone (GnRH), release frequency, and high androgen levels. Prenatal androgenization (PNA) recapitulates these phenotypes in primates and rodents. Female offspring of mice injected with dihydrotestosterone (DHT) on gestational D16-18 exhibit disrupted estrous cyclicity, increased LH and testosterone, and increased GnRH neuron firing rate as adults. PNA also alters the developmental trajectory of GnRH neuron firing rates, markedly blunting the prepubertal peak in firing that occurs in 3wk-old controls. GnRH neurons do not express detectable androgen receptors and are thus probably not the direct target of DHT. Rather, PNA likely alters GnRH neuronal activity by modulating upstream neurons, such as hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B (gene Tac2), and dynorphin, aka KNDy neurons. We hypothesized PNA treatment changes firing rates of KNDy neurons in a similar age-dependent manner as GnRH neurons. We conducted targeted extracellular recordings (0.5-2h) of Tac2-identified KNDy neurons from control and PNA mice at 3wks of age and in adulthood. About half of neurons were quiescent (<0.005Hz). Long-term firing rates of active cells varied, suggestive of episodic activity, but were not different among groups. Short-term burst firing was also similar. We thus reject the hypothesis that PNA alters the firing rate of KNDy neurons. This does not preclude altered neurosecretory output of KNDy neurons, involvement of other neuronal populations, or in-vivo networks as critical drivers of altered GnRH firing rates in PNA mice.


2019 ◽  
Vol 7 (8) ◽  
pp. 84 ◽  
Author(s):  
Coutinho ◽  
Kauffman

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, affecting at least 10% of women of reproductive age. PCOS is typically characterized by the presence of at least two of the three cardinal features of hyperandrogenemia (high circulating androgen levels), oligo- or anovulation, and cystic ovaries. Hyperandrogenemia increases the severity of the condition and is driven by increased luteinizing hormone (LH) pulse secretion from the pituitary. Indeed, PCOS women display both elevated mean LH levels, as well as an elevated frequency of LH pulsatile secretion. The abnormally high LH pulse frequency, reflective of a hyperactive gonadotropin-releasing hormone (GnRH) neural circuit, suggests a neuroendocrine basis to either the etiology or phenotype of PCOS. Several studies in preclinical animal models of PCOS have demonstrated alterations in GnRH neurons and their upstream afferent neuronal circuits. Some rodent PCOS models have demonstrated an increase in GnRH neuron activity that correlates with an increase in stimulatory GABAergic innervation and postsynaptic currents onto GnRH neurons. Additional studies have identified robust increases in hypothalamic levels of kisspeptin, another potent stimulator of GnRH neurons. This review outlines the different brain and neuroendocrine changes in the reproductive axis observed in PCOS animal models, discusses how they might contribute to either the etiology or adult phenotype of PCOS, and considers parallel findings in PCOS women.


Sign in / Sign up

Export Citation Format

Share Document