interevent interval
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 1)

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Xu ◽  
Guangming Xie ◽  
Jin Tao ◽  
Minyi Xu ◽  
Quan Zhou

This paper proposes an observer-based event-triggered algorithm to solve circle formation control problems for both first- and second-order multiagent systems, where the communication topology is modeled by a spanning tree-based directed graph with limited resources. In particular, the observation-based event-triggering mechanism is used to reduce the update frequency of the controller, and the triggering time depends on the norm of the state function and the trigger threshold of measurement errors. The analysis shows that sufficient conditions are established for achieving the desired circle formation, while there exists at least one agent for which the next interevent interval is strictly positive. Numerical simulations of both first- and second-order multiagent systems are also given to demonstrate the effectiveness of the proposed control laws.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3850-3860 ◽  
Author(s):  
Garrett T. Gaskins ◽  
Suzanne M. Moenter

GnRH neurons are critical for the central regulation of fertility, integrating steroidal, metabolic and other cues. GnRH neurons appear to lack receptors for many of these cues, suggesting involvement of afferent systems to convey information. Orexin A (orexin) is of interest in this regard as a neuromodulator that up-regulates metabolic activity, increases wakefulness, and affects GnRH/LH release. We examined the electrophysiological response of GnRH neurons to orexin application and how this response changes with estradiol and time of day in a defined animal model. Mice were either ovariectomized (OVX) or OVX and implanted with estradiol capsules (OVX+E). GnRH neurons from OVX+E mice exhibit low firing rates in the morning, due to estradiol-negative feedback, and high firing rates in the evening, due to positive feedback. Orexin inhibited activity of GnRH neurons from OVX mice independent of time of day. In GnRH neurons from OVX+E mice, orexin was inhibitory during the evening, suggesting orexin inhibition is not altered by estradiol. No effect of orexin was observed in OVX+E morning recordings, due to low basal GnRH activity. Inhibitory effects of orexin were mediated by the type 1 orexin receptor, but antagonism of this receptor did not increase GnRH neuron activity during estradiol-negative feedback. Spike pattern analysis revealed orexin increases interevent interval by reducing the number of single spikes and bursts. Orexin reduced spikes/burst and burst duration but did not affect intraburst interval. This suggests orexin may reduce overall firing rate by suppressing spike initiation and burst maintenance in GnRH neurons.


2012 ◽  
Vol 107 (5) ◽  
pp. 1431-1442 ◽  
Author(s):  
Masayuki Kobayashi ◽  
Hiroki Takei ◽  
Kiyofumi Yamamoto ◽  
Hiroshige Hatanaka ◽  
Noriaki Koshikawa

Release of GABA is controlled by presynaptic GABA receptor type B (GABAB) autoreceptors at GABAergic terminals. However, there is no direct evidence that GABAB autoreceptors are activated by GABA release from their own terminals, and precise profiles of GABAB autoreceptor-mediated suppression of GABA release remain unknown. To explore these issues, we performed multiple whole-cell, patch-clamp recordings from layer V rat insular cortex. Both unitary inhibitory and excitatory postsynaptic currents (uIPSCs and uEPSCs, respectively) were recorded by applying a five-train depolarizing pulse injection at 20 Hz. In connections from both fast-spiking (FS) and non-FS interneurons to pyramidal cells, the GABAB receptor antagonist CGP 52432 had little effect on the initial uIPSC amplitude. However, uIPSCs, responding to later pulses, were effectively facilitated. This CGP 52432-induced facilitation was prominent in the fourth uIPSCs, which were evoked 150 ms after the first uIPSC. The facilitation of uIPSCs was accompanied by an increase in the paired-pulse ratio. In addition, analysis of the coefficient of variation suggests the involvement of presynaptic mechanisms in CGP 52432-induced uIPSC facilitation. Paired-pulse stimulation (interstimulus interval = 150 ms) of presynaptic FS cells revealed that the second uIPSC was also facilitated by CGP 52432, which had little effect on the amplitude and interevent interval of miniature IPSCs. In contrast, uEPSCs, responding to all five stimulations of a presynaptic pyramidal cell, were less affected by CGP 52432. These results suggest that a single presynaptic action potential is sufficient to activate GABAB autoreceptors and to suppress GABA release in the cerebral cortex.


2000 ◽  
Vol 88 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Kenneth I. Berger ◽  
Indu Ayappa ◽  
I. Barry Sorkin ◽  
Robert G. Norman ◽  
David M. Rapoport ◽  
...  

The contribution of apnea to chronic hypercapnia in obstructive sleep apnea (OSA) has not been clarified. Using a model (D. M. Rapoport, R. G. Norman, and R. M. Goldring. J. Appl. Physiol. 75: 2302–2309, 1993), we previously illustrated failure of CO2 homeostasis during periodic breathing resulting from temporal dissociation between ventilation and perfusion (“temporal V˙/Q˙mismatch”). This study measures acute kinetics of CO2 during periodic breathing and addresses interapnea ventilatory compensation for maintenance of CO2 homeostasis in 11 patients with OSA during daytime sleep (37–171 min). Ventilation and expiratory CO2 and O2 fractions were measured on a breath-by-breath basis by means of a tight-fitting full facemask. Calculations included CO2excretion, metabolic CO2production, and CO2 balance (metabolic CO2 production − exhaled CO2). CO2 balance was tabulated for each apnea/hypopnea event-interevent cycle and as a cumulative value during sleep. Cumulative CO2 balance varied (−3,570 to +1,388 ml). Positive cumulative CO2 balance occurred in the absence of overall hypoventilation during sleep. For each cycle, positive CO2 balance occurred despite increased interevent ventilation to rates as high as 45 l/min. This failure of CO2 homeostasis was dependent on the event-to-interevent duration ratio. The results demonstrate that 1) periodic breathing provides a mechanism for acute hypercapnia in OSA, 2) acute hypercapnia during periodic breathing may occur without a decrease in average minute ventilation, supporting the presence of temporalV˙/Q˙ mismatch, as predicted from our model, and 3) compensation for CO2 accumulation during apnea/hypopnea may be limited by the duration of the interevent interval. The relationship of this acute hypercapnia to sustained chronic hypercapnia in OSA remains to be further explored.


1998 ◽  
Vol 80 (4) ◽  
pp. 1670-1677 ◽  
Author(s):  
Tony Defazio ◽  
John J. Hablitz

DeFazio, Tony and John J. Hablitz. Zinc and zolpidem modulate mIPSCs in rat neocortical pyramidal neurons. J. Neurophysiol. 80: 1670–1677, 1998. Pharmacological modulation of γ-aminobutyric acid-A (GABAA) receptors can provide important information on the types of subunits composing these receptors. In recombinant studies, zinc more potently inhibits αβ subunits compared with the αβγ combination, whereas modulation by nanomolar concentrations of the benzodiazepine type 1-selective agonist zolpidem is conferred by the α1βγ2 subunit combination. We examined four properties of miniature inhibitory postsynaptic currents (mIPSCs) from identified necortical pyramidal cells in rat brain slices: decay time constant, peak amplitude, rate of rise, and interevent interval. Exposure to 50 μM zinc reduced the decay time constant, peak amplitude, and rate of rise with no effect on interevent interval. Zolpidem enhanced mIPSCs in a concentration-dependent manner. Both 20 and 100 nM zolpidem increased the decay time constants of mIPSCs. In some cells, both peak amplitude and rate of rise were also enhanced. All cells treated with zinc were also responsive to zolpidem. These results show that neocortical pyramidal cells have a population of GABAA receptors sensitive to both zinc and zolpidem.


1996 ◽  
Vol 76 (2) ◽  
pp. 799-807 ◽  
Author(s):  
J. H. Singer ◽  
M. C. Bellingham ◽  
A. J. Berger

1. In a brain stem slice preparation, we recorded glutamatergic excitatory postsynaptic currents (EPSCs) in hypoglossal motoneurons (HMs) evoked by extracellular stimulation in the reticular formation just ipsilateral to the hypoglossal motor nucleus (n. XII). Serotonin (5-HT) inhibited glutamatergic synaptic transmission in a dose-dependent fashion as indicated by a reduction in the evoked EPSC (eEPSC) peak amplitude to 46 +/- 2% (mean +/- SE, n = 26) of control (5-HT 10 microM). This effect was not voltage dependent, as the eEPSC reversal potential was not altered (n = 5). Additionally, 5-HT decreased the rate of rise of the eEPSC to 41 +/- 2% of control (n = 14). Blockade of N-methyl-D-aspartate-receptor-channels by D(-)-2-amino-5-phosphonopentanoic acid (50 microM) or of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor-channels by 6,7-dinitro-quinoxaline (20 microM) did not alter the relative reduction of the eEPSC amplitude by 5-HT (n = 7 and 3, respectively). 2. In the presence of tetrodotoxin (1 microM), bath application of 5-HT did not reduce postsynaptic glutamate currents elicited by pressure ejection of L-glutamate (1 mM) onto HMs (n = 5), and it increased the median interevent interval of spontaneous miniature EPSCs (mEPSCs) to 178 +/- 12% of control (n = 4), suggesting that 5-HT acts presynaptically to reduce the probability of vesicle release. mEPSC amplitude was decreased slightly in three of four cells (median amplitude = 92 +/- 3% of control). 3. The specific 5-HT1B receptor agonist [3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one] (1 microM) mimicked 5-HT in its effect on eEPSCs (eEPSC amplitude reduced to 31 +/- 5% of control; rate of rise reduced to 40 +/- 4% of control, n = 10 and 5, respectively) and mEPSCs (median interevent interval increased to 231 +/- 36% of control; median mEPSC amplitude = 102 +/- 3% of control, n = 5). Additionally, 5-HT-mediated inhibition was not blocked by coapplication of 1-(2-methoxyphenyl)-4-[4-(2-phthalimido) butyl] piperazine hydrobromide (1 microM), a 5-HT1A antagonist, and 3-[2-[4-(4-flurobenzoyl)-1-piperdinyl]ethyl]-2,4(1H,3H)-quin azolinedione tartrate (1 microM), a 5-HT2A/2C antagonist (n = 4). These data indicate that the 5-HT effect is primarily 5-HT1B receptor mediated. 4. We conclude that 5-HT, acting through presynaptic 5-HT1B receptors, inhibits glutamatergic synaptic transmission by reducing the probability of vesicle release.


1987 ◽  
Vol 77 (4) ◽  
pp. 1347-1358
Author(s):  
J. C. Savage ◽  
Robert S. Cockerham

Abstract In December 1984, Ryall and Hill noted that the five principal events in the Bishop-Mammoth Lakes earthquake sequence occurred at intervals of about 1.5 yr with a standard deviation for an individual event of 0.25 yr. Some data selection was involved in identifying the principal events, although the choices seemed reasonable. The recent Chalfant Valley earthquake (ML = 6.4; 21 July 1986) followed the last prior principal event in the Bishop-Mammoth Lakes sequence by 1.65 yr, and no important activity intervened except one aftershock from the prior event. Thus, the Chalfant Valley earthquake could have been forecast from the observed periodicity. However, the precision of the forecast (±0.8 yr for the 95 per cent confidence interval) is not sufficient to furnish convincing evidence that the Bishop-Mammoth Lakes sequence is quasi-periodic. Extrapolation of the trend established by the six previous events suggests that the next event in the Bishop-Mammoth Lakes sequence would be expected in December 1987 ± 0.7 yr (95 per cent confidence interval). The regularity of the Bishop-Mammoth Lakes sequence is comparable to that of the Parkfield, California, sequence (average interevent interval 20.8 yr with a standard deviation for an individual interval of 6.2 yr). Both sequences consist of six events. There is a plausible physical explanation for the periodicity observed at Parkfield; such an explanation for the Bishop-Mammoth Lakes sequence is lacking.


Sign in / Sign up

Export Citation Format

Share Document