scholarly journals Vasoactive Intestinal Polypeptide Can Excite Gonadotropin-Releasing Hormone Neurons in a Manner Dependent on Estradiol and Gated by Time of Day

Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 3130-3136 ◽  
Author(s):  
Catherine A. Christian ◽  
Suzanne M. Moenter

A surge of GnRH release signals the LH surge that triggers ovulation. The GnRH surge is dependent on a switch in estradiol feedback from negative to positive and, in rodents, a daily neural signal, likely from the suprachiasmatic nuclei. Vasoactive intestinal polypeptide (VIP) may be involved in suprachiasmatic nuclei-GnRH neuron communication. Here we assessed the effects of acute VIP (5 min treatment) on GnRH neuron function using targeted extracellular recordings of firing activity of GnRH neurons in brain slices. We examined the effect of VIP on firing rate at different times of day using an established ovariectomized, estradiol-treated (OVX+E) mouse model that exhibits daily LH surges timed to the late afternoon. Cells from OVX animals (no estradiol) did not respond to VIP, regardless of time of day. With estradiol, the effect of VIP on GnRH neurons was dependent on the time of recording. During negative feedback, OVX+E cells did not respond. VIP increased firing in cells recorded during surge onset, but this excitatory response was reduced at surge peak. Acute treatment of OVX+E cells during surge peak with a VIP receptor antagonist decreased GnRH neuron firing. This suggests endogenous VIP may both increase GnRH neuron firing during the surge and occlude response to exogenous VIP. These data provide functional evidence for VIP effects on GnRH neurons and indicate that both estradiol and time of day gate the GnRH neuron response to this peptide. VIP may provide an excitatory signal from the circadian clock that helps time the GnRH surge.

Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 291-300 ◽  
Author(s):  
Justyna Pielecka-Fortuna ◽  
Suzanne M. Moenter

Abstract GnRH neurons are the final central pathway controlling fertility. Kisspeptin potently activates GnRH release via G protein-coupled receptor 54 (GPR54). GnRH neurons express GPR54, and kisspeptin can act directly; however, GPR54 is broadly expressed, suggesting indirect actions are possible. Transsynaptic mechanisms are involved in estradiol-induced potentiation of GnRH neuron response to kisspeptin. To investigate these mechanisms, separate whole-cell voltage-clamp recordings were performed of γ-aminobutyric acid (GABA)-ergic and glutamatergic transmission to GnRH neurons in brain slices before and during kisspeptin treatment. To determine whether estradiol alters the effect of kisspeptin on synaptic transmission, mice were ovariectomized and either left with no further treatment (OVX) or treated with estradiol implants (OVX+E). Cells were first studied in the morning when estradiol exerts negative feedback. Kisspeptin increased frequency and amplitude of GABAergic postsynaptic currents (PSCs) in GnRH neurons from OVX+E mice. Blocking action potentials eliminated the effect on frequency, indicating presynaptic actions. Amplitude changes were due to postsynaptic actions. Kisspeptin also increased frequency of glutamatergic excitatory PSCs in cells from OVX+E animals. Kisspeptin did not affect either GABAergic or glutamatergic transmission to GnRH neurons in cells from OVX mice, indicating effects on transmission are estradiol dependent. In contrast to stimulatory effects on GABAergic PSC frequency during negative feedback, kisspeptin had no effect during positive feedback. These data suggest estradiol enables kisspeptin-mediated increases in GABA and glutamate transmission to GnRH neurons. Furthermore, the occlusion of the response during positive feedback implies one consequence of estradiol positive feedback is an increase in transmission to GnRH neurons mediated by endogenous kisspeptin.


2007 ◽  
Vol 97 (3) ◽  
pp. 2553-2558 ◽  
Author(s):  
T. M. Brown ◽  
C. S. Colwell ◽  
J. A. Waschek ◽  
H. D. Piggins

Vasoactive intestinal polypeptide (VIP), acting via the VPAC2 receptor, is a key signaling pathway in the suprachiasmatic nuclei (SCN), the master clock controlling daily rhythms in mammals. Most mice lacking functional VPAC2 receptors are unable to sustain behavioral rhythms and lack detectable SCN electrical rhythms in vitro. Adult mice that do not produce VIP (VIP/PHI−/−) exhibit less severe alterations in wheel-running rhythms, but the effects of this deficiency on the amplitude, phasing, or periodicity of their SCN cellular rhythms are unknown. To investigate this, we used suction electrodes to extracellularly record multiple- and single-unit electrical activity in SCN brain slices from mice with varying degrees of VIP deficiency, ranging from wild-type (VIP/PHI+/+) to heterozygous (VIP/PHI+/−) and VIP/PHI−/− animals. We found decreasing proportions of rhythmic cells in SCN slices from VIP/PHI+/+ (∼91%, n = 23) through VIP/PHI-/+ (∼71%, n = 28) to VIP/PHI−/− mice (62%; n = 37) and a parallel trend toward decreasing amplitude in the remaining rhythmic cells. SCN neurons from VIP/PHI−/− mice exhibited a broad range in the period and phasing of electrical rhythms, concordant with the known alterations in their behavioral rhythms. Further, treatment of VIP/PHI−/− slices with a VPAC2 receptor antagonist significantly reduced the proportion of oscillating neurons, suggesting that VPAC2 receptors still become activated in the SCN of these mice. The results establish that VIP is important for appropriate periodicity and phasing of SCN neuronal rhythms and suggest that residual VPAC2 receptor signaling promotes rhythmicity in adult VIP/PHI−/− mice.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1474-1479 ◽  
Author(s):  
Justyna Pielecka ◽  
Samuel D. Quaynor ◽  
Suzanne M. Moenter

GnRH neurons are the central regulators of fertility, and their activity is modulated by steroid feedback. In women with hyperandrogenemic infertility and in animal models of these disorders, elevated androgen levels interfere with progesterone (P) negative feedback. Our previous work showed that steroids altered the frequency and amplitude of γ-aminobutyric acid (GABA) transmission to GnRH neurons. Specifically, P inhibited GABA transmission, which can excite GnRH neurons, whereas dihydrotestosterone (DHT) increased GABA transmission. In this study the GnRH neuron firing rate was examined in the same animal models. Adult (>2 months) female mice were ovariectomized and treated for 8–12 d with implants containing estradiol (E), E and P, E and DHT, or E, P, and DHT. Targeted extracellular recordings were used to examine the long-term firing activity of green fluorescent protein-identified GnRH neurons in brain slices from these mice. In comparing E alone to E plus P animals, P increased the percentage of time that GnRH neurons were quiescent and reduced the area under the curve of the firing rate and the instantaneous firing frequency, suggesting that P provides additional negative feedback over E alone. The addition of DHT markedly increased GnRH neuron activity in both the presence and absence of P. DHT also altered the firing pattern of GnRH neurons, such that peaks in the firing rate detected by the Cluster8 algorithm were approximately doubled in frequency and amplitude. These data support and extend our previous findings and are consistent with the hypothesis that the changes in GABAergic transmission observed in these animal models impact upon the activity of GnRH neurons, and central androgen action probably stimulates GnRH release.


Endocrinology ◽  
2020 ◽  
Vol 162 (1) ◽  
Author(s):  
Siew Hoong Yip ◽  
Pauline Campos ◽  
Xinhuai Liu ◽  
Robert Porteous ◽  
Allan E Herbison

Abstract The neural mechanisms generating pulsatile GnRH release from the median eminence (ME) remain unclear. Studies undertaken in the mouse demonstrate that GnRH neurons extend projections to the ME that have properties of both dendrites and axons, termed “dendrons,” and that the kisspeptin neuron pulse generator targets these distal dendrons to drive pulsatile GnRH secretion. It presently remains unknown whether the GnRH neuron dendron exists in other species. We report here the generation of a knock-in Gnrh1-Ires-Cre rat line with near-perfect targeting of Cre recombinase to the GnRH neuronal phenotype. More than 90% of adult male and female GnRH neurons express Cre with no ectopic expression. Adeno-associated viruses were used in adult female Gnrh1-Ires-Cre rats to target mCherry or GCAMP6 to rostral preoptic area GnRH neurons. The mCherry tracer revealed the known unipolar and bipolar morphology of GnRH neurons and their principal projection pathways to the external zone of the ME. Synaptophysin-labeling of presynaptic nerve terminals revealed that GnRH neuron distal projections received numerous close appositions as they passed through the arcuate nucleus and into the median eminence. Confocal GCaMP6 imaging in acute horizontal brain slices demonstrated that GnRH neuron distal projections lateral to the median eminence were activated by kisspeptin. These studies indicate the presence of a dendron-like arrangement in the rat with GnRH neuron distal projections receiving synaptic input and responding to kisspeptin.


Endocrinology ◽  
2020 ◽  
Author(s):  
Siew Hoong Yip ◽  
Xinhuai Liu ◽  
Sabine Hessler ◽  
Isaiah Cheong ◽  
Robert Porteous ◽  
...  

Abstract Acute stress is a potent suppressor of pulsatile LH secretion but the mechanisms through which corticotrophin-releasing hormone (CRH) neurons inhibit GnRH release remain unclear. The activation of paraventricular nucleus (PVN) CRH neurons with Cre-dependent hM3Dq in Crh-Cre female mice resulted in the robust suppression of pulsatile LH secretion. Channelrhodopsin (ChR2)-assisted circuit mapping revealed that PVN CRH neuron projections existed around kisspeptin neurons in the arcuate nucleus (ARN) although many more fibers made close appositions with GnRH neuron distal dendrons in the ventral ARN. Acutely-prepared brain slice electrophysiology experiments in GnRH-GFP mice showed a dose-dependent (30 and 300 nM CRH) activation of firing in ~20% of GnRH neurons in both intact diestrous and ovariectomized mice with inhibitory effects being uncommon (<8%). Confocal GCaMP6 imaging of GnRH neuron distal dendrons in acute para-horizontal brain slices from GnRH-Cre mice injected with Cre-dependent GCaMP6s AAVs demonstrated no effects of 30-300 nM CRH on GnRH neuron dendron calcium concentrations. Electrophysiological recordings of ARN kisspeptin neurons in Crh-Cre,Kiss1-GFP mice revealed no effects of 30 -300 nM CRH on basal or neurokinin B-stimulated firing rate. Similarly, the optogenetic activation (2-20 Hz) of CRH nerve terminals in the ARN of Crh-Cre,Kiss1-GFP mice injected with Cre-dependent ChR2 had no effect on kisspeptin neuron firing. Together, these studies demonstrate that PVN CRH neurons potently suppress LH pulsatility but do not exert direct inhibitory control over GnRH neurons, at their cell body or dendron, or the ARN kisspeptin neuron pulse generator in the female mouse.


Endocrinology ◽  
2015 ◽  
Vol 157 (2) ◽  
pp. 752-763 ◽  
Author(s):  
Kristen A. Ruka ◽  
Laura L. Burger ◽  
Suzanne M. Moenter

Abstract Gonadal steroids regulate the pattern of GnRH secretion. Arcuate kisspeptin (kisspeptin, neurokinin B, and dynorphin [KNDy]) neurons may convey steroid feedback to GnRH neurons. KNDy neurons increase action potential firing upon the activation of neurokinin B receptors (neurokinin-3 receptor [NK3R]) and decrease firing upon the activation of dynorphin receptors (κ-opioid receptor [KOR]). In KNDy neurons from intact vs castrated male mice, NK3R-mediated stimulation is attenuated and KOR-mediated inhibition enhanced, suggesting gonadal secretions are involved. Estradiol suppresses spontaneous GnRH neuron firing in male mice, but the mediators of the effects on firing in KNDy neurons are unknown. We hypothesized the same gonadal steroids affecting GnRH firing pattern would regulate KNDy neuron response to NK3R and KOR agonists. To test this possibility, extracellular recordings were made from KNDy neurons in brain slices from intact, untreated castrated or castrated adult male mice treated in vivo with steroid receptor agonists. As observed previously, the stimulation of KNDy neurons by the NK3R agonist senktide was attenuated in intact vs castrated mice and suppression by dynorphin was enhanced. In contrast to observations of steroid effects on the GnRH neuron firing pattern, both estradiol and DHT suppressed senktide-induced KNDy neuron firing and enhanced the inhibition caused by dynorphin. An estrogen receptor-α agonist but not an estrogen receptor-β agonist mimicked the effects of estradiol on NK3R activation. These observations suggest the steroid modulation of responses to activation of NK3R and KOR as mechanisms for negative feedback in KNDy neurons and support the contribution of these neurons to steroid-sensitive elements of a GnRH pulse generator.


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4174-4186 ◽  
Author(s):  
Michel K. Herde ◽  
Allan E. Herbison

GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G–positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.


2002 ◽  
Vol 14 (8) ◽  
pp. 639-646 ◽  
Author(s):  
H. E. Reed ◽  
D. J. Cutler ◽  
T. M. Brown ◽  
J. Brown ◽  
C. W. Coen ◽  
...  

Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Eden A Dulka ◽  
Laura L Burger ◽  
Suzanne M Moenter

Abstract Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.


Sign in / Sign up

Export Citation Format

Share Document