scholarly journals Ovarian Androgens Maintain High GnRH Neuron Firing Rate in Adult Prenatally-Androgenized Female Mice

Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Eden A Dulka ◽  
Laura L Burger ◽  
Suzanne M Moenter

Abstract Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.

Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 728-735 ◽  
Author(s):  
Chun Xu ◽  
Xu-Zhi Xu ◽  
Craig S. Nunemaker ◽  
Suzanne M. Moenter

Abstract Pulsatile release of GnRH provides central control of reproduction. GnRH neuron activity is likely synchronized to produce hormone pulses, but the mechanisms are largely unknown. One candidate for communication among these neurons is GnRH itself. Cultured embryonic and immortalized GnRH neurons express GnRH receptor type I (GnRHR-1), but expression has not been shown in adult GnRH neurons. Using mice that express green fluorescent protein (GFP) in GnRH neurons, we tested whether adult GnRH neurons express GnRHR-1. GFP-positive (n = 42) and -negative neurons (n = 22) were harvested from brain slices, and single-cell RT-PCR was performed with cell contents. Fifty-two percent of the GnRH neurons tested expressed GnRHR-1, but only 9% of non-GnRH hypothalamic neurons expressed GnRHR-1; no false harvest controls (n = 13) were positive. GnRHR-1 expression within GnRH neurons suggested a physiological ultrashort loop feedback role for GnRH. Thus, we examined the effect of GnRH on the firing rate of GnRH neurons. Low-dose GnRH (20 nm) significantly decreased firing rate in 12 of 22 neurons (by 42 ± 4%, P < 0.05), whereas higher doses increased firing rate (200 nm, five of 10 neurons, 72 ± 26%; 2000 nm, nine of 13 neurons, 53 ± 8%). Interestingly, the fraction of GnRH neurons responding was similar to the fraction in which GnRHR-1 was detected. Together, these data demonstrate that a subpopulation of GnRH neurons express GnRHR-1 and respond to GnRH with altered firing. The dose dependence suggests that this autocrine control of GnRH neurons may be not only a mechanism for generating and modulating pulsatile release, but it may also be involved in the switch between pulse and surge modes of release.


Endocrinology ◽  
2002 ◽  
Vol 143 (6) ◽  
pp. 2284-2292 ◽  
Author(s):  
Craig S. Nunemaker ◽  
R. Anthony DeFazio ◽  
Suzanne M. Moenter

Abstract GnRH neurons comprise the final common pathway of an estrogen-sensitive pattern generator controlling fertility. To determine estradiol effects on GnRH neuron firing patterns, adult transgenic mice were ovariectomized (OVX), and half were treated with estradiol (OVX+E). One week later targeted single-unit extracellular recordings were made from GnRH neurons identified by green fluorescent protein expression. Estradiol markedly affected GnRH neuron firing patterns, increasing the percentage and duration of time these cells were quiescent (≤1 action current/min). Estradiol increased the interval between episodes of increased firing rate determined by Cluster analysis of recordings more than 45 min (OVX+E 38.8 ± 7.2 min, OVX 16.7 ± 2.1 min, n = 6 each). Possible mechanisms of estradiol modulation were examined by simultaneously blocking ionotropic secretion of γ-aminobutyric acid and glutamatergic receptors. This treatment had no effect on cells from OVX mice (n = 10), indicating episodic firing of GnRH neurons is not driven by activation of these receptors. Receptor blockade eliminated estradiol effects on GnRH neurons in the midventral preoptic area (n = 7) but not elsewhere (n = 7). Individual GnRH neurons thus display episodic firing patterns at intervals previously reported for secretory pulses. Estradiol modulates episode frequency to exert feedback control; in a substantial subset of GnRH neurons, estradiol feedback is enforced via GABAergic and/or glutamatergic afferents.


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2799-2804 ◽  
Author(s):  
Eric Ducret ◽  
Greg M. Anderson ◽  
Allan E. Herbison

The recent discovery that an RFamide termed gonadotropin-inhibitory hormone is likely to be a hypophysiotrophic gonadotropin release-inhibiting hormone in birds has generated interest into the role of LPXRFamide neuropeptides in the control of gonadotropin secretion in mammals. Recent immunocytochemical studies in birds and mammals have suggested that neurons expressing the mammalian LPXRFamides, RFamide-related peptides (RFRPs) 1 and 3, may innervate and regulate GnRH neurons directly. We used cell-attached electrophysiology in adult male and female GnRH-green fluorescent protein-tagged neurons to examine whether RFRP-3 modulated the electrical excitability of GnRH neurons. RFRP-3 was found to exhibit rapid and repeatable inhibitory effects on the firing rate of 41% of GnRH neurons. A small population of GnRH neurons (12%) increased their firing rate in response to RFRP-3, and the remainder was unaffected. No difference was detected in the RFRP-3 responses of GnRH neurons from male, diestrous, or proestrus female mice. The suppressive effect of RFRP-3 was maintained when amino acid transmission was blocked, suggesting a possible direct effect of RFRP-3 upon GnRH neurons. To evaluate the effects of other RFamide neuropeptides on GnRH neurons, we tested the actions of prolactin-releasing peptide-20 and -31. Neither compounds altered the firing rate of GnRH neurons. These studies demonstrate that RFRP-3 has a likely direct suppressive action on the excitability of GnRH neurons, indicating a role for RFRPs in the regulation of gonadotropin secretion in mammals through modulation of GnRH neuron activity.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1474-1479 ◽  
Author(s):  
Justyna Pielecka ◽  
Samuel D. Quaynor ◽  
Suzanne M. Moenter

GnRH neurons are the central regulators of fertility, and their activity is modulated by steroid feedback. In women with hyperandrogenemic infertility and in animal models of these disorders, elevated androgen levels interfere with progesterone (P) negative feedback. Our previous work showed that steroids altered the frequency and amplitude of γ-aminobutyric acid (GABA) transmission to GnRH neurons. Specifically, P inhibited GABA transmission, which can excite GnRH neurons, whereas dihydrotestosterone (DHT) increased GABA transmission. In this study the GnRH neuron firing rate was examined in the same animal models. Adult (>2 months) female mice were ovariectomized and treated for 8–12 d with implants containing estradiol (E), E and P, E and DHT, or E, P, and DHT. Targeted extracellular recordings were used to examine the long-term firing activity of green fluorescent protein-identified GnRH neurons in brain slices from these mice. In comparing E alone to E plus P animals, P increased the percentage of time that GnRH neurons were quiescent and reduced the area under the curve of the firing rate and the instantaneous firing frequency, suggesting that P provides additional negative feedback over E alone. The addition of DHT markedly increased GnRH neuron activity in both the presence and absence of P. DHT also altered the firing pattern of GnRH neurons, such that peaks in the firing rate detected by the Cluster8 algorithm were approximately doubled in frequency and amplitude. These data support and extend our previous findings and are consistent with the hypothesis that the changes in GABAergic transmission observed in these animal models impact upon the activity of GnRH neurons, and central androgen action probably stimulates GnRH release.


Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5818-5829 ◽  
Author(s):  
Imre Farkas ◽  
Imre Kalló ◽  
Levente Deli ◽  
Barbara Vida ◽  
Erik Hrabovszky ◽  
...  

Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)A receptor (GABAA-R)-mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABAA-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABAA-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABAA-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl2 in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and pathological conditions whereby GnRH neurons regulate their excitatory GABAergic inputs.


2021 ◽  
Author(s):  
Amanda G Gibson ◽  
Jennifer Jaime ◽  
Laura L Burger ◽  
Suzanne M Moenter

Neuroendocrine control of reproduction is disrupted in many individuals with polycystic ovary syndrome, who present with increased luteinizing hormone (LH), and presumably gonadotropin-releasing hormone (GnRH), release frequency, and high androgen levels. Prenatal androgenization (PNA) recapitulates these phenotypes in primates and rodents. Female offspring of mice injected with dihydrotestosterone (DHT) on gestational D16-18 exhibit disrupted estrous cyclicity, increased LH and testosterone, and increased GnRH neuron firing rate as adults. PNA also alters the developmental trajectory of GnRH neuron firing rates, markedly blunting the prepubertal peak in firing that occurs in 3wk-old controls. GnRH neurons do not express detectable androgen receptors and are thus probably not the direct target of DHT. Rather, PNA likely alters GnRH neuronal activity by modulating upstream neurons, such as hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B (gene Tac2), and dynorphin, aka KNDy neurons. We hypothesized PNA treatment changes firing rates of KNDy neurons in a similar age-dependent manner as GnRH neurons. We conducted targeted extracellular recordings (0.5-2h) of Tac2-identified KNDy neurons from control and PNA mice at 3wks of age and in adulthood. About half of neurons were quiescent (<0.005Hz). Long-term firing rates of active cells varied, suggestive of episodic activity, but were not different among groups. Short-term burst firing was also similar. We thus reject the hypothesis that PNA alters the firing rate of KNDy neurons. This does not preclude altered neurosecretory output of KNDy neurons, involvement of other neuronal populations, or in-vivo networks as critical drivers of altered GnRH firing rates in PNA mice.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 3984-3989 ◽  
Author(s):  
Garrett T. Gaskins ◽  
Katarzyna M. Glanowska ◽  
Suzanne M. Moenter

GnRH neurons form the final common pathway for the central control of reproduction. GnRH release occurs from terminals in the external layer of the median eminence (ME) for neuroendocrine control of the pituitary, and near GnRH-GnRH fiber appositions within the preoptic area (POA). Whether or not control of GnRH secretion by neuromodulators is different in these 2 areas is unknown. Mutations in neurokinin B (NKB) or the neurokinin-3 receptor (NK3R) are linked to hypogonadotropic hypogonadism in humans, suggesting that NKB may regulate GnRH secretion. Using fast scan cyclic voltammetry through carbon-fiber microelectrodes, we examined real-time GnRH release in response to the NK3R agonist senktide in the ME and POA. Coronal brain slices were acutely prepared from adult gonad-intact GnRH-green fluorescent protein male mice, and carbon-fiber microelectrodes were placed either within green fluorescent protein-positive terminal fields of the ME or near GnRH-GnRH fiber appositions in the POA. Senktide induced GnRH release consistently in the ME but not the POA, indicating that GnRH release is differentially regulated by NKB in a location-dependent manner. Senktide also induced GnRH secretion in the ME of kisspeptin-knockout (Kiss1 knockout) mice. Interestingly, release amplitude was lower compared with wild-type mice. These data indicate regulation of GnRH release by NK3R agonists is site specific and suggest that kisspeptin is not a required mediator between NK3R activation and GnRH secretion in the ME. This information will be useful for informing future models of afferent regulation of GnRH release.


2015 ◽  
Author(s):  
Anton Khmelinskii ◽  
Matthias Meurer ◽  
Chi-Ting Ho ◽  
Birgit Besenbeck ◽  
Julia Fueller ◽  
...  

Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far tFTs were constructed by combining different slower-maturing red fluorescent proteins (redFPs) with the same faster-maturing superfolder green fluorescent protein (sfGFP). Towards a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing greenFPs, while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT towards slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for design of new tFTs.


Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 618-628 ◽  
Author(s):  
Alison V. Roland ◽  
Suzanne M. Moenter

Abstract Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.


Endocrinology ◽  
2012 ◽  
Vol 154 (2) ◽  
pp. 796-806 ◽  
Author(s):  
Aleisha M. Moore ◽  
Melanie Prescott ◽  
Rebecca E. Campbell

Gonadal steroid hormone feedback is impaired in polycystic ovarian syndrome (PCOS), a common endocrine disorder characterized by hyperandrogenism and an associated increase in LH pulse frequency. Using a prenatal androgen (PNA)-treated mouse model of PCOS, we aimed to investigate negative and positive feedback effects of estrogens on the hypothalamic-pituitary axis regulation of LH. PNA-treated mice exhibited severely disrupted estrous cycles, hyperandrogenism, significantly reduced fertility, and altered ovarian morphology. To assess the negative feedback effects of estrogens, LH was measured before and after ovariectomy and after estradiol (E2) administration. Compared with controls, PNA-treated mice exhibited a blunted postcastration rise in LH (P &lt; .001) and an absence of LH suppression after E2 administration. To assess E2-positive feedback, control and PNA-treated GnRH-green fluorescent protein transgenic mice were subjected to a standard ovariectomy with E2-replacement regimen, and both plasma and perfusion-fixed brains were collected at the time of the expected GnRH/LH surge. Immunocytochemistry and confocal imaging of cFos and green fluorescent protein were used to assess GnRH neuron activation and spine density. In the surged group, both control and PNA-treated mice had significantly increased LH and cFos activation in GnRH neurons (P &lt; .05) compared with nonsurged animals. Spine density was quantified in cFos-positive and -negative GnRH neurons to examine whether there was an increase in spine density in cFos-expressing GnRH neurons of surged mice as expected. A significant increase in spine density in cFos-expressing GnRH neurons was evident in control animals; however, no significant increase was observed in the PNA-treated mice because spine density was elevated across all GnRH neurons. These data support that PNA treatment results in a PCOS-like phenotype that includes impaired E2-negative feedback. Additionally, although E2-positive feedback capability is retained in PNA mice, elevated GnRH neuron spine density may reflect altered synaptic regulation.


Sign in / Sign up

Export Citation Format

Share Document