scholarly journals Klotho Protein Promotes Adipocyte Differentiation

Endocrinology ◽  
2006 ◽  
Vol 147 (8) ◽  
pp. 3835-3842 ◽  
Author(s):  
Yukana Chihara ◽  
Hiromi Rakugi ◽  
Kazuhiko Ishikawa ◽  
Masashi Ikushima ◽  
Yoshihiro Maekawa ◽  
...  

Mice with homozygous disruption of the klotho exhibit multiple age-related disorders and have barely detectable amounts of white adipose tissue. Although klotho expression in cultured adipocytes has been reported, little is known about its function in adipocytes. In the present study, we investigated the role of klotho on adipocyte differentiation. Adipocyte differentiation was induced by incubation of confluent 3T3-L1 cells with insulin, dexamethasone, and 1-methyl-3-isobutyl-xanthin. Klotho-siRNA and expression vector were produced for klotho suppression and overexpression, respectively. Klotho protein was purified for determination of the hormonal effect of klotho. Klotho mRNA and protein expression increased up to the 3rd d of differentiation. A peroxisome proliferator-activated receptor-γ agonist increased klotho expression during the early period of adipocyte differentiation. The mRNA expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein (C/EBP)α, C/EBPβ, C/EBPδ, peroxisome proliferator-activated receptor-γ, and fatty acid binding protein 4, was decreased by klotho suppression, and increased 1.9- to 3.8-fold by klotho overexpression. The results of Oil Red O staining also suggested that klotho overexpression promoted adipocyte differentiation. Klotho protein stimulation resulted in a 2.4- to 4.6-fold increase in mRNA expression of differentiation markers compared with control, and the time course depended on adipocyte induction status. Western blot analysis showed that protein levels of C/EBPα and C/EBPδ were increased by Klotho protein stimulation. These results suggest that klotho works as a hormonal factor to promote adipocyte differentiation in the early days, during the period of transient proliferation in the differentiation process, and that klotho may play an essential role in adipocyte differentiation.

2010 ◽  
Vol 24 (2) ◽  
pp. 370-380 ◽  
Author(s):  
Natalia Di Pietro ◽  
Valentine Panel ◽  
Schantel Hayes ◽  
Alessia Bagattin ◽  
Sunitha Meruvu ◽  
...  

Abstract The serum and glucocorticoid-inducible kinase 1 (SGK1) is an inducible kinase the physiological function of which has been characterized primarily in the kidney. Here we show that SGK1 is expressed in white adipose tissue and that its levels are induced in the conversion of preadipocytes into fat cells. Adipocyte differentiation is significantly diminished via small interfering RNA inhibition of endogenous SGK1 expression, whereas ectopic expression of SGK1 in mesenchymal precursor cells promotes adipogenesis. The SGK1-mediated phenotypic effects on differentiation parallel changes in the mRNA levels for critical regulators and markers of adipogenesis, such as peroxisome proliferator-activated receptor γ, CCAAT enhancer binding protein α, and fatty acid binding protein aP2. We demonstrate that SGK1 affects differentiation by direct phosphorylation of Foxo1, thereby changing its cellular localization from the nucleus to the cytosol. In addition we show that SGK1−/− cells are unable to relocalize Foxo1 to the cytosol in response to dexamethasone. Together these results show that SGK1 influences adipocyte differentiation by regulating Foxo1 phosphorylation and reveal a potentially important function for this kinase in the control of fat mass and function.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 29 ◽  
Author(s):  
Mingxun Li ◽  
Qisong Gao ◽  
Zhichen Tian ◽  
Xubin Lu ◽  
Yujia Sun ◽  
...  

Adipogenesis is a complicated but precisely orchestrated process mediated by a series of transcription factors. Our previous study has identified a novel long noncoding RNA (lncRNA) that was differentially expressed during bovine adipocyte differentiation. Because this lncRNA overlaps with miR-221 in the genome, it was named miR-221 host gene (MIR221HG). The purpose of this study was to clone the full length of MIR221HG, detect its subcellular localization, and determine the effects of MIR221HG on bovine adipocyte differentiation. The 5′ rapid amplification of cDNA ends (RACE) and 3′ RACE analyses demonstrated that MIR221HG is a transcript of 1064 nucleotides, is located on the bovine X chromosome, and contains a single exon. Bioinformatics analyses suggested that MIR221HG is an lncRNA and the promoter of MIR221HG includes the binding consensus sequences of the forkhead box C1 (FOXC1) and krüppel-like factor5 (KLF5). The semi-quantitative PCR and quantitative real-time PCR (qRT-PCR) of nuclear and cytoplasmic fractions revealed that MIR221HG mainly resides in the nucleus. Inhibition of MIR221HG significantly increased adipocyte differentiation, as indicated by a dramatic increment in the number of mature adipocytes and in the expression of the respective adipogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and fatty acid binding protein 4 (FABP4). Our results provide a basis for elucidating the mechanism by which MIR221HG regulates adipocyte differentiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sae-Rom Yoo ◽  
Chang-Seob Seo ◽  
Hyeun-Kyoo Shin ◽  
Soo-Jin Jeong

Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells.Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors.Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase.Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity.


2019 ◽  
Vol 99 (4) ◽  
pp. 764-771 ◽  
Author(s):  
Baojun Li ◽  
Liying Qiao ◽  
Xiaoru Yan ◽  
Tao Shi ◽  
Duanyang Ren ◽  
...  

Fat deposition in animals involves adipogenic differentiation guided by transcriptional factors and other key factors. To understand the molecular mechanism underlying ovine adipogenic differentiation, the dynamic mRNA expression of key genes related to fat deposition, including peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid-binding protein 4 (FABP4), FABP5, and cellular retinoic acid-binding protein 2 (CRABP2), were analyzed during in vitro differentiation of ovine preadipocytes. The stromal vascular cells from underneath the tail fat tissue of 1-wk-old sheep were isolated and cultured, and the preadipocytes were induced using a cocktail of 3-isobutyl-1-methylxanthine, insulin, dexamethasone, and troglitazone. The cultivated cells were collected at different time points after induced differentiation. The expression levels of PPAR-γ, FABP4, FABP5, and CRABP2 were studied by quantitative real-time polymerase chain reaction. The expressions of these genes in sheep were compared with those in human and mouse retrieved from the Gene Expression Omnibus DataSets. We observed that the expression of PPAR-γ, FABP4, and FABP5 was increased upon differentiation of ovine preadipocytes, as in humans and mice. The expression of CRABP2 was sharply increased from days 0 to 2 after induced differentiation and was subsequently decreased. This expression pattern of CRABP2 was different from that observed in humans and mice. Our results provide new insights into the function of these genes in fat deposition.


Sign in / Sign up

Export Citation Format

Share Document