scholarly journals Steroid and G Protein Binding Characteristics of the Seatrout and Human Progestin Membrane Receptor α Subtypes and Their Evolutionary Origins

Endocrinology ◽  
2007 ◽  
Vol 148 (2) ◽  
pp. 705-718 ◽  
Author(s):  
Peter Thomas ◽  
Y. Pang ◽  
J. Dong ◽  
P. Groenen ◽  
J. Kelder ◽  
...  

A novel progestin receptor (mPR) with seven-transmembrane domains was recently discovered in spotted seatrout and homologous genes were identified in other vertebrates. We show that cDNAs for the mPR α subtypes from spotted seatrout (st-mPRα) and humans (hu-mPRα) encode progestin receptors that display many functional characteristics of G protein-coupled receptors. Flow cytometry and immunocytochemical staining of whole MDA-MB-231 cells stably transfected with the mPRαs using antibodies directed against their N-terminal regions show the receptors are localized on the plasma membrane and suggest the N-terminal domain is extracellular. Both recombinant st-mPRα and hu-mPRα display high affinity (Kd 4.2–7.8 nm), limited capacity (Bmax 0.03–0.32 nm), and displaceable membrane binding specific for progestins. Progestins activate a pertussis toxin-sensitive inhibitory G protein (Gi) to down-regulate membrane-bound adenylyl cyclase activity in both st-mPRα- and hu-mPRα-transfected cells. Coimmunoprecipitation experiments demonstrate the receptors are directly coupled to the Gi protein. Similar to G protein-coupled receptors, dissociation of the receptor/G protein complex results in a decrease in ligand binding to the mPRαs and mutation of the C-terminal, and third intracellular loop of st-mPRα causes loss of ligand-dependent G protein activation. Phylogenetic analysis indicates the mPRs are members of a progesterone and adipoQ receptor (PAQR) subfamily that is only present in chordates, whereas other PAQRs also occur in invertebrates and plants. Progesterone and adipoQ receptors are related to the hemolysin3 family and have origins in the Eubacteria. Thus, mPRs arose from Eubacteria independently from members of the GPCR superfamily, which arose from Archeabacteria, suggesting convergent evolution of seven-transmembrane hormone receptors coupled to G proteins.

1995 ◽  
Vol 7 (3) ◽  
pp. 521 ◽  
Author(s):  
JF Padbury ◽  
YT Tseng ◽  
JA Waschek

Regulation of beta 1-adrenergic receptors is unusual in developing animals. For example, glucocorticoid-and thyroid hormone-responsiveness for several genes is seen in animals treated during fetal life but beta 1-responsiveness is not seen until after birth. In order to investigate this at the transcriptional level, the ovine beta 1 receptor gene was cloned from a sheep genomic library. An approach using high-stringency screening with cDNA probes and oligonucleotides from regions of human and rat genes conserved but unique to the beta 1 receptor but not to other seven transmembrane, G-protein-coupled receptors. Over 800,000 clones were screened from which 40-50 positive clones were identified by each of the probes. There was, however, only a single clone which was recognized by each of the probes. A 5-kb insert was subcloned and shown to contain sequences which hybridized to each of the probes. Using the restriction map of the rat beta 1 receptor, a 1.0-kb Pst1 internal fragment was further subcloned for sequence identification. Confirmation of this fragment as the ovine beta 1 receptor was based on homology of the beta 1 receptor from other species and tissue distribution of mRNA. Nucleotide sequence homology was 93% with the human beta 1 receptor and 84% with rat. Amino acid sequence homology was > 75% and approached 100% in the transmembrane regions. The approach described represents a practical approach to cloning and identification of hormone receptors from the highly homologous members of the seven-transmembrane, G-protein-coupled receptors.


2020 ◽  
Vol 117 (28) ◽  
pp. 16346-16355 ◽  
Author(s):  
Amirhossein Mafi ◽  
Soo-Kyung Kim ◽  
William A. Goddard

Agonists to the μ-opioid G protein-coupled receptor (μOR) can alleviate pain through activation of G protein signaling, but they can also induce β-arrestin activation, leading to such side effects as respiratory depression. Biased ligands to μOR that induce G protein signaling without inducing β-arrestin signaling can alleviate pain while reducing side effects. However, the mechanism for stimulating β-arrestin signaling is not known, making it difficult to design optimum biased ligands. We use extensive molecular dynamics simulations to determine three-dimensional (3D) structures of activated β-arrestin2 stabilized by phosphorylated μOR bound to the morphine and D-Ala2,N-MePhe4, Gly-ol]-enkephalin (DAMGO) nonbiased agonists and to the TRV130 biased agonist. For nonbiased agonists, we find that the β-arrestin2 couples to the phosphorylated μOR by forming strong polar interactions with intracellular loop 2 (ICL2) and either the ICL3 or cytoplasmic region of transmembrane (TM6). Strikingly, Gi protein makes identical strong bonds with these same ICLs. Thus, the Gi protein and β-arrestin2 compete for the same binding site even though their recruitment leads to much different outcomes. On the other hand, we find that TRV130 has a greater tendency to bind the extracellular portion of TM2 and TM3, which repositions TM6 in the cytoplasmic region of μOR, hindering β-arrestin2 from making polar anchors to the ICL3 or to the cytosolic end of TM6. This dramatically reduces the affinity between μOR and β-arrestin2.


2002 ◽  
Vol 30 (4) ◽  
pp. 428-432 ◽  
Author(s):  
E. W. Hillhouse ◽  
H. Randeva ◽  
G. Ladds ◽  
D. Grammatopoulos

Corticotropin-releasing hormone (CRH) and related peptides (urocortins, sauvagine, urotensin) play a central role in the co-ordination of autonomic, behavioural, cardiovascular, immune and endocrine responses to stressful stimuli. Their actions are mediated through activation of two types of G-protein-coupled receptors encoded by separate genes. In this review we focus on the diverse structural and functional characteristics of the family of CRH-like peptides and their receptors.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Alessandro Bisello ◽  
Michael Chorev ◽  
Peter A. Friedman ◽  
Tom Gardella ◽  
Rebecca Hills ◽  
...  

The parathyroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Parathyroid Hormone Receptors [47]) are family B G protein-coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor-derived peptides: PTH (84 amino acids), and PTHrP (141 amino-acids) and related peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids). [125I]PTH may be used to label both PTH1 and PTH2 receptors.


2015 ◽  
Vol 112 (19) ◽  
pp. 6194-6199 ◽  
Author(s):  
Hannah M. Stoveken ◽  
Alexander G. Hajduczok ◽  
Lei Xu ◽  
Gregory G. Tall

The large class of adhesion G protein-coupled receptors (aGPCRs) bind extracellular matrix or neighboring cell-surface ligands to regulate organ and tissue development through an unknown activation mechanism. We examined aGPCR activation using two prototypical aGPCRs, GPR56 and GPR110. Active dissociation of the noncovalently bound GPR56 or GPR110 extracellular domains (ECDs) from the respective seven-transmembrane (7TM) domains relieved an inhibitory influence and permitted both receptors to activate defined G protein subtypes. After ECD displacement, the newly revealed short N-terminal stalk regions of the 7TM domains were found to be essential for G protein activation. Synthetic peptides comprising these stalks potently activated GPR56 or GPR110 in vitro or in cells, demonstrating that the stalks comprise a tethered agonist that was encrypted within the ECD. Establishment of an aGPCR activation mechanism provides a rational platform for the development of aGPCR synthetic modulators that could find clinical utility toward aGPCR-directed disease.


Sign in / Sign up

Export Citation Format

Share Document