scholarly journals Mineralocorticoid Receptor Blockade Attenuates Chronic Overexpression of the Renin-Angiotensin-Aldosterone System Stimulation of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Cardiac Remodeling

Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3773-3780 ◽  
Author(s):  
Sameer Stas ◽  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
Lama Appesh ◽  
Melvin R. Hayden ◽  
...  

The renin-angiotensin-aldosterone system contributes to cardiac remodeling, hypertrophy, and left ventricular dysfunction. Angiotensin II and aldosterone (corticosterone in rodents) together generate reactive oxygen species (ROS) via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which likely facilitate this hypertrophy and remodeling. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo mineralocorticoid receptor (MR) blockade in a rodent model of the chronically elevated tissue renin-angiotensin-aldosterone system, the transgenic TG (mRen2) 27 rat (Ren2). The Ren2 overexpresses the mouse renin transgene with resultant hypertension, insulin resistance, proteinuria, and cardiovascular damage. Young (6- to 7-wk-old) male Ren2 and age-matched Sprague-Dawley rats were treated with spironolactone or placebo for 3 wk. Heart tissue ROS, immunohistochemical analysis of 3-nitrotyrosine, and NADPH oxidase (NOX) subunits (gp91phox recently renamed NOX2, p22phox, Rac1, NOX1, and NOX4) were measured. Structural changes were assessed with cine-magnetic resonance imaging, transmission electron microscopy, and light microscopy. Significant increases in Ren2 septal wall thickness (cine-magnetic resonance imaging) were accompanied by perivascular fibrosis, increased mitochondria, and other ultrastructural changes visible by light microscopy and transmission electron microscopy. Although there was no significant reduction in systolic blood pressure, significant improvements were seen with MR blockade on ROS formation and NOX subunits (each P < 0.05). Collectively, these data suggest that MR blockade, independent of systolic blood pressure reduction, improves cardiac oxidative stress-induced structural and functional changes, which are driven, in part, by angiotensin type 1 receptor-mediated increases in NOX.

1994 ◽  
Vol 31 (5) ◽  
pp. 518-527 ◽  
Author(s):  
S. L. Stockham ◽  
J. W. Harvey ◽  
D. A. Kinden

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a well-characterized X-linked inherited disorder in humans but has not been reported in horses. We describe a persistent hemolytic anemia and hyperbilirubinemia due to a severe G6PD deficiency in an American Saddlebred colt. Other abnormalities in the colt's erythrocytes as compared with those of healthy horses ( n = 22–35) included increased activities of hexokinase and pyruvate kinase, decreased concentrations of reduced glutathione and reduced nicotinamide adenine dinucleotide phosphate (NADP), and increased concentration of oxidized NADP. Morphologic abnormalities included eccentrocytosis, pyknocytosis, anisocytosis, macrocytosis, and increased number of Howell-Jolly bodies. Scanning and transmission electron microscopic examinations revealed that eccentrocytes had contracted to spherical regions and thin collapsed regions. Eccentrocytes were more electron dense than were normal erythrocytes when examined by transmission electron microscopy. When exposed to acetylphenylhydrazine, erythrocytes from the G6PD-deficient colt produced more and smaller Heinz bodies than did erythrocytes from normal horses. Abnormalities in the colt's dam included presence of eccentrocytes and pyknocytes; her average erythrocyte G6PD activity was slightly below the range of reference values.


Sign in / Sign up

Export Citation Format

Share Document