scholarly journals Adverse Adipose Phenotype and Hyperinsulinemia in Gravid Mice Deficient in Placental Growth Factor

Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2176-2183 ◽  
Author(s):  
Bianca Hemmeryckx ◽  
Rita van Bree ◽  
Berthe Van Hoef ◽  
Lisbeth Vercruysse ◽  
H. Roger Lijnen ◽  
...  

Pregnancy-induced metabolic changes are regulated by signals from an expanded adipose organ. Placental growth factor (PlGF), acting through vascular endothelial growth factor receptor-1, may be among those signals. There is a steep rise in circulating PlGF during normal pregnancy, which is repressed in gravidas who develop preeclampsia. PlGF-deficiency in mice impairs adipose vascularization and development. Here we studied young-adult PlGF-deficient (PlGF−/−) and wild-type mice on a high-fat diet in the nongravid state and at embryonic day (E) 13.5 or E18.5 of gestation. Litter size and weight were normal, but E18.5 placentas were smaller in PlGF−/− pregnancies. PlGF−/− mice showed altered intraadipose dynamics, with the following: 1) less blood vessels and fewer brown, uncoupling protein (UCP)-1-positive, adipocytes in white sc and perigonadal fat compartments and 2) white adipocyte hypertrophy. The mRNA expression of β3-adrenergic receptors, peroxisome proliferator-activated receptor-γ coactivator-1α, and UCP-1 was decreased accordingly. Moreover, PlGF−/− mice showed hyperinsulinemia. Pregnancy-associated changes were largely comparable in PlGF−/− and wild-type dams. They included expanded sc fat compartments and adipocyte hypertrophy, whereas adipose expression of key angiogenesis/adipogenesis (vascular endothelial growth factor receptor-1, peroxisome proliferator-activated receptor-γ2) and thermogenesis (β3-adrenergic receptors, peroxisome proliferator-activated receptor-γ coactivator-1α, and UCP-1) genes was down-regulated; circulating insulin levels gradually increased during pregnancy. In conclusion, reduced adipose vascularization in PlGF−/− mice impairs adaptive thermogenesis in favor of energy storage, thereby promoting insulin resistance and hyperinsulinemia. Pregnancy adds to these changes by PlGF-independent mechanisms. Disturbed intraadipose dynamics is a novel mechanism to explain metabolic changes in late pregnancy in general and preeclamptic pregnancy in particular.

2005 ◽  
Vol 25 (6) ◽  
pp. 2441-2449 ◽  
Author(s):  
Megan E. Baldwin ◽  
Michael M. Halford ◽  
Sally Roufail ◽  
Richard A. Williams ◽  
Margaret L. Hibbs ◽  
...  

ABSTRACT Vascular endothelial growth factor receptor 3 (Vegfr-3) is a tyrosine kinase that is expressed on the lymphatic endothelium and that signals for the growth of the lymphatic vessels (lymphangiogenesis). Vegf-d, a secreted glycoprotein, is one of two known activating ligands for Vegfr-3, the other being Vegf-c. Vegf-d stimulates lymphangiogenesis in tissues and tumors; however, its role in embryonic development was previously unknown. Here we report the generation and analysis of mutant mice deficient for Vegf-d. Vegf-d-deficient mice were healthy and fertile, had normal body mass, and displayed no pathologic changes consistent with a defect in lymphatic function. The lungs, sites of strong Vegf-d gene expression during embryogenesis in wild-type mice, were normal in Vegf-d-deficient mice with respect to tissue mass and morphology, except that the abundance of the lymphatics adjacent to bronchioles was slightly reduced. Dye uptake experiments indicated that large lymphatics under the skin were present in normal locations and were functional. Smaller dermal lymphatics were similar in number, location, and function to those in wild-type controls. The lack of a profound lymphatic phenotype in Vegf-d-deficient mice suggests that Vegf-d does not play a major role in lymphatic development or that Vegf-c or another, as-yet-unknown activating Vegfr-3 ligand can compensate for Vegf-d during development.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Raquel Grau ◽  
Manuel D. Díaz-Muñoz ◽  
Cristina Cacheiro-Llaguno ◽  
Manuel Fresno ◽  
Miguel A. Iñiguez

A growing body of evidence indicates that PPAR (peroxisome proliferator-activated receptor)αagonists might have therapeutic usefulness in antitumoral therapy by decreasing abnormal cell growth, and reducing tumoral angiogenesis. Most of the anti-inflammatory and antineoplastic properties of PPAR ligands are due to their inhibitory effects on transcription of a variety of genes involved in inflammation, cell growth and angiogenesis. Cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF) are crucial agents in inflammatory and angiogenic processes. They also have been significantly associated to cell proliferation, tumor growth, and metastasis, promoting tumor-associated angiogenesis. Aberrant expression of VEGF and COX-2 has been observed in a variety of tumors, pointing to these proteins as important therapeutic targets in the treatment of pathological angiogenesis and tumor growth. This review summarizes the current understanding of the role of PPARαand its ligands in the regulation of COX-2 and VEGF gene expression in the context of tumor progression.


Sign in / Sign up

Export Citation Format

Share Document