scholarly journals Effects of Leptin on Rat Ventromedial Hypothalamic Neurons

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5146-5154 ◽  
Author(s):  
Boman G. Irani ◽  
Christelle Le Foll ◽  
Ambrose Dunn-Meynell ◽  
Barry E. Levin

Neurons in the ventromedial and arcuate hypothalamic nuclei (VMN and ARC, respectively) mediate many of leptin’s effects on energy homeostasis. Some are also glucosensing, whereby they use glucose as a signaling molecule to regulate their firing rate. We used fura-2 calcium (Ca2+) imaging to determine the interactions between these two important mediators of peripheral metabolism on individual VMN neurons and the mechanisms by which leptin regulates neuronal activity in vitro. Leptin excited 24%, inhibited 20%, and had a biphasic response in 10% of VMN neurons. Excitation occurred with a EC50 of 5.2 fmol/liter and inhibition with a IC50 of 4.2 fmol/liter. These effects were independent of the ambient glucose levels, and both glucosensing and non-glucosensing neurons were affected by leptin. In contrast, the ARC showed a very different distribution of leptin-responsive neurons, with 40% leptin excited, 10% leptin inhibited, and 2% having a biphasic response (χ2 = 60.2; P < 0.0001). Using pharmacological manipulations we found that leptin inhibits VMN neurons via activation of phosphoinositol-3 kinase and activation of the ATP-sensitive K+ channel. In addition, leptin inhibition was antagonized by 5′-AMP-activated protein kinase activation in 39% of neurons but was unaffected by 5′-AMP-activated protein kinase inhibition. No mechanism was delineated for leptin-induced excitation. Thus, within the physiological range of brain glucose levels, leptin has a differential effect on VMN vs. ARC neurons, and acts on both glucosensing and non-glucosensing VMN neurons in a glucose-independent fashion with inhibition primarily dependent upon activation of the ATP-sensitive K+ channel.

FEBS Letters ◽  
2001 ◽  
Vol 505 (3) ◽  
pp. 348-352 ◽  
Author(s):  
Christophe Beauloye ◽  
Anne-Sophie Marsin ◽  
Luc Bertrand ◽  
Ulrike Krause ◽  
D.Grahame Hardie ◽  
...  

2008 ◽  
Vol 200 (1) ◽  
pp. 93-105 ◽  
Author(s):  
E Guillod-Maximin ◽  
A F Roy ◽  
C M Vacher ◽  
A Aubourg ◽  
V Bailleux ◽  
...  

Adiponectin is involved in the control of energy homeostasis in peripheral tissues through Adipor1 and Adipor2 receptors. An increasing amount of evidence suggests that this adipocyte-secreted hormone may also act at the hypothalamic level to control energy homeostasis. In the present study, we observed the gene and protein expressions of Adipor1 and Adipor2 in rat hypothalamus using different approaches. By immunohistochemistry, Adipor1 expression was ubiquitous in the rat brain. By contrast, Adipor2 expression was more limited to specific brain areas such as hypothalamus, cortex, and hippocampus. In arcuate and paraventricular hypothalamic nuclei, Adipor1, and Adipor2 were expressed by neurons and astrocytes. Furthermore, using transgenic green fluorescent protein mice, we showed that Adipor1 and Adipor2 were present in pro–opiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus. Finally, adiponectin treatment by intracerebroventricular injection induced AMP-activated protein kinase (AMPK) phosphorylation in the rat hypothalamus. This was confirmed byin vitrostudies using hypothalamic membrane fractions. In conclusion, Adipor1 and Adipor2 are both expressed by neurons (including POMC and NPY neurons) and astrocytes in the rat hypothalamic nuclei. Adiponectin is able to increase AMPK phosphorylation in the rat hypothalamus. These data reinforced a potential role of adiponectin and its hypothalamic receptors in the control of energy homeostasis.


Circulation ◽  
2016 ◽  
Vol 134 (5) ◽  
pp. 405-421 ◽  
Author(s):  
Hong Liu ◽  
Yujin Zhang ◽  
Hongyu Wu ◽  
Angelo D’Alessandro ◽  
Gennady G. Yegutkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document