scholarly journals A Functional Leptin System Is Essential for Sodium Tungstate Antiobesity Action

Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 642-650 ◽  
Author(s):  
Ignasi Canals ◽  
María C. Carmona ◽  
Marta Amigó ◽  
Albert Barbera ◽  
Analía Bortolozzi ◽  
...  

Sodium tungstate is a novel agent in the treatment of obesity. In diet-induced obese rats, it is able to reduce body weight gain by increasing energy expenditure. This study evaluated the role of leptin, a key regulator of energy homeostasis, in the tungstate antiobesity effect. Leptin receptor-deficient Zucker fa/fa rats and leptin-deficient ob/ob mice were treated with tungstate. In lean animals, tungstate administration reduced body weight gain and food intake and increased energy expenditure. However, in animals with deficiencies in the leptin system, treatment did not modify these parameters. In ob/ob mice in which leptin deficiency was restored through adipose tissue transplantation, treatment restored the tungstate-induced body weight gain and food intake reduction as well as energy expenditure increase. Furthermore, in animals in which tungstate administration increased energy expenditure, changes in the expression of key genes involved in brown adipose tissue thermogenesis were detected. Finally, the gene expression of the hypothalamic neuropeptides, Npy, Agrp, and Cart, involved in the leptin regulation of energy homeostasis, was also modified by tungstate in a leptin-dependent manner. In summary, the results indicate that the effectiveness of tungstate in reducing body weight gain is completely dependent on a functional leptin system. Anti-obesity activity of tungstate is due to an increase in thermogenesis and a reduction in food intake and depends entirely on a functional leptin system.

2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2021 ◽  
Vol 65 (11) ◽  
pp. 2170027
Author(s):  
Karen Alejandra Méndez‐Lara ◽  
Elisabeth Rodríguez‐Millán ◽  
David Sebastián ◽  
Rosi Blanco‐Soto ◽  
Mercedes Camacho ◽  
...  

1993 ◽  
Vol 264 (6) ◽  
pp. R1214-R1218 ◽  
Author(s):  
J. M. Gray ◽  
S. Schrock ◽  
M. Bishop

Treatment of ovariectomized rats for 3 days with 2 micrograms estradiol benzoate (E2B), 6 micrograms ethinyl estradiol, or 1-2 mg of either of the antiestrogens nafoxidine or tamoxifen led to similar decreases in food intake, body weight gain, adipose tissue lipoprotein lipase activity, and hepatic fatty acid synthetase activity, despite their different effects on uterine growth and induction of progestin receptors in pituitary and adipose tissue. Longer-term (2 wk) treatment with tamoxifen resulted in similar transient changes in food intake and body weight gain, as did treatment with E2B. Daily administration of 50 micrograms fluphenazine (FLU) led to significant decreases in body weight, although there was no change in food intake. Concurrent administration of FLU with either E2B or tamoxifen led to additive effects on body weight and food intake change. None of the treatments had any effect on in vitro binding of [3H]tamoxifen to antiestrogen binding sites in pooled hypothalamic-preoptic area samples.


2015 ◽  
Vol 308 (4) ◽  
pp. E315-E323 ◽  
Author(s):  
Kana Ohyama ◽  
Yoshihito Nogusa ◽  
Katsuya Suzuki ◽  
Kosaku Shinoda ◽  
Shingo Kajimura ◽  
...  

Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT.


2016 ◽  
Vol 56 (4) ◽  
pp. 1629-1636 ◽  
Author(s):  
Joan Serrano ◽  
Àngela Casanova-Martí ◽  
Andreu Gual ◽  
Anna Maria Pérez-Vendrell ◽  
M. Teresa Blay ◽  
...  

1981 ◽  
Vol 240 (5) ◽  
pp. E499-E503 ◽  
Author(s):  
S. M. Schwartz ◽  
G. N. Wade

The effects of estradiol and progesterone on food intake, body weight, carcass adiposity, and adipose tissue lipoprotein lipase (LPL) activity were investigated in weanling female rats. Treatment with estradiol benzoate (EB) reduced body weight gain in ovariectomized (OVX) weanlings as it does in adults. However, other responses to EB were attenuated or absent in weanlings. EB treatment did not reduce food intake, carcass adiposity, or adipose tissue LPL activity. This impaired responsiveness to EB may be due to decreased levels of cytoplasmic estrogen receptors in liver and adipose tissue (but not hypothalamus) in weanlings. On the other hand, responsiveness to progesterone was adultlike in weanlings. Treatment of OVX, EB-primed weanlings with progesterone increased food intake, body weight gain, and carcass adiposity. This adultlike responsiveness to progesterone was associated with adultlike levels of adipose tissue progestin receptors. However, progesterone treatment did not increase adipose tissue LPL activity in weanlings, indicating that changes in LPL activity are not necessary for progesterone-induced obesity.


2021 ◽  
pp. 2100111
Author(s):  
Karen Alejandra Méndez‐Lara ◽  
Elisabeth Rodríguez‐Millán ◽  
David Sebastián ◽  
Rosi Blanco‐Soto ◽  
Mercedes Camacho ◽  
...  

2021 ◽  
Author(s):  
Wei L Shen ◽  
Hongbin Sun ◽  
Qian Zhou ◽  
Hao Bian ◽  
Mengting Wang ◽  
...  

Mutations in the gene brain-derived neurotrophic factor (BDNF) cause obesity in humans. BDNF signaling and its expressing neurons in the hypothalamus help control feeding, energy expenditure (EE), and physical activity. However, whether the BDNF neurons interact with another EE-regulating system, the thermoregulation circuitry, remains unclear. Here, we show that BDNF neurons in the dorsomedial hypothalamus (DMH) are activated by environmental cooling and sufficient to induce body temperature increases and brown adipose tissue (BAT) thermogenesis. Conversely, blocking these neurons impairs BAT thermogenesis and cold defense, causing body weight gain and glucose intolerance. DMH BDNF neurons are therefore an important type of thermoregulatory neuron, integrating thermal afferent signals to control EE during cold defense. This reveals a critical intersection between the BDNF circuitry and the thermoregulatory system.


1987 ◽  
Vol 252 (2) ◽  
pp. E202-E208 ◽  
Author(s):  
K. Tokuyama ◽  
J. Himms-Hagen

Adrenalectomy normalizes many abnormalities of the obese (ob/ob) mouse. The high corticosterone concentration in blood may account in part for development of obesity and other abnormalities in the ob/ob mouse. Our objective was to determine dose-response relationships for the effect of corticosterone on the obesity. Lean and ob/ob mice were adrenalectomized or sham-operated at 4.5 wk of age. Adrenalectomized mice received 100 mg implants of cholesterol containing corticosterone (0, 2, 5, 20, or 50 mg) at 8.5 wk of age and were killed at 10.5 wk of age. In ob/ob mice, but not in lean mice, low physiological levels of serum corticosterone (up to 10 micrograms/dl) markedly increased body weight gain, food intake, and serum insulin. They also increased white and brown adipose tissue weights and decreased brown adipose tissue mitochondrial GDP binding. Higher levels of corticosterone (12-22 micrograms/dl) increased body weight gain, white and brown adipose tissue weights, and serum insulin and suppressed brown adipose tissue mitochondrial GDP binding in lean mice also, although in most cases to a lesser extent than in ob/ob mice, but were still without effect on food intake. Only very high levels of corticosterone (approximately 30 micrograms/dl) increased food intake in lean mice. Hyperglycemia was induced in ob/ob, but not lean, mice only at concentrations of corticosterone greater than 17 micrograms/dl. Thermoregulation was unaffected by serum corticosterone at levels from 0 to 30 micrograms/dl in both ob/ob and lean mice. Thus the ob/ob mouse is excessively sensitive and responsive to an effect of physiological levels of corticosterone that results in hyperphagia, hyperinsulinemia, and increased weight gain.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 66 (4) ◽  
pp. 1970-1975 ◽  
Author(s):  
J. Arnold ◽  
R. A. Little ◽  
N. J. Rothwell

The effects of continuously administered endotoxin on 7-day energy balance were investigated in male rats. Three groups of rats were implanted with osmotic pumps; two groups received saline-filled pumps, whereas the third received endotoxin. One of the saline groups was pair fed to match the food intake of the endotoxemic rats. After 7 days, body energy and protein and fat contents of rats were determined together with the energy content of food and feces. Endotoxin infusion not only induced fever, but it also suppressed appetite and significantly decreased body weight gain. Metabolizable energy intake was reduced by approximately 20% in infected rats. Although protein and fat gains were lowest in the endotoxin group, there appeared to be a selective loss of protein when considered as percent of body weight. Percent body fat was unaltered between the groups. Energy expenditure considered in absolute (kJ) or body weight-independent (kJ/kg0.67) terms yielded similar patterns of results; expenditure (kJ) was 10 and 20% (P less than 0.05, P less than 0.01) lower in the endotoxemic and pair-fed rats, respectively, compared with controls. Hence, compared with pair-fed rats, endotoxin-infused animals had a 10% rise in their expenditure. Brown adipose tissue thermogenesis was assessed by mitochondrial binding of guanosine 5′-diphosphate, and results showed that binding was greatest in endotoxemic rats and lowest in the pair-fed animals. The present results suggest that in this endotoxemic model appetite suppression exacerbates changes in energy balance. However, the reduction in body weight gain is also dependent on a decrease in metabolic efficiency and an increase in total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document