Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism

2015 ◽  
Vol 308 (11) ◽  
pp. E942-E949 ◽  
Author(s):  
Chiao-nan (Joyce) Chen ◽  
Shang-Ying Lin ◽  
Yi-Hung Liao ◽  
Zhen-jie Li ◽  
Alice May-Kuen Wong

Caloric restriction (CR) attenuates age-related muscle loss. However, the underlying mechanism responsible for this attenuation is not fully understood. This study evaluated the role of energy metabolism in the CR-induced attenuation of muscle loss. The aims of this study were twofold: 1) to evaluate the effect of CR on energy metabolism and determine its relationship with muscle mass, and 2) to determine whether the effects of CR are age dependent. Young and middle-aged rats were randomized into either 40% CR or ad libitum (AL) diet groups for 14 wk. Major energy-producing pathways in muscles, i.e., glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), were examined. We found that the effects of CR were age dependent. CR improved muscle metabolism and normalized muscle mass in middle-aged animals but not young animals. CR decreased glycolysis and increased the cellular dependency for OXPHOS vs. glycolysis in muscles of middle-aged rats, which was associated with the improvement of normalized muscle mass. The metabolic reprogramming induced by CR was related to modulation of pyruvate metabolism and increased mitochondrial biogenesis. Compared with animals fed AL, middle-aged animals with CR had lower lactate dehydrogenase A content and greater mitochondrial pyruvate carrier content. Markers of mitochondrial biogenesis, including AMPK activation levels and SIRT1 and COX-IV content, also showed increased levels. In conclusion, 14 wk of CR improved muscle metabolism and preserved muscle mass in middle-aged animals but not in young developing animals. CR-attenuated age-related muscle loss is associated with reprogramming of the metabolic pathway from glycolysis to OXPHOS.

1993 ◽  
Vol 75 (5) ◽  
pp. 2125-2133 ◽  
Author(s):  
A. R. Coggan ◽  
A. M. Abduljalil ◽  
S. C. Swanson ◽  
M. S. Earle ◽  
J. W. Farris ◽  
...  

To examine effects of aging and endurance training on human muscle metabolism during exercise, 31P magnetic resonance spectroscopy was used to study the metabolic response to exercise in young (21–33 yr) and older (58–68 yr) untrained and endurance-trained men (n = 6/group). Subjects performed graded plantar flexion exercise with the right leg, with metabolic responses measured using a 31P surface coil placed over the lateral head of the gastrocnemius muscle. Muscle biopsy samples were also obtained for determination of citrate synthase activity. Rate of increase in P(i)-to-phosphocreatine ratio with increasing power output was greater (P < 0.01) in older untrained [0.058 +/- 0.022 (SD) W-1] and trained men (0.042 +/- 0.010 W-1) than in young untrained (0.038 +/- 0.017 W-1) and trained men (0.024 +/- 0.010 W-1). Plantar flexor muscle cross-sectional area and volume (determined using 1H magnetic resonance imaging) were 11–12% (P < 0.05) and 16–18% (P < 0.01) smaller, respectively, in older men. When corrected for this difference in muscle mass, age-related differences in metabolic response to exercise were reduced by approximately 50% but remained significant (P < 0.05). Citrate synthase activity was approximately 20% lower (P < 0.001) in older untrained and trained men than in corresponding young groups and was inversely related to P(i)-phosphocreatine slope (r = -0.63, P < 0.001). Age-related reductions in exercise capacity were associated with an altered muscle metabolic response to exercise, which appeared to be due to smaller muscle mass and lower muscle respiratory capacity of older subjects.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 14 ◽  
Author(s):  
Behzad Mesbahzadeh ◽  
Hossein Salarjavan ◽  
Saeed Samarghandian ◽  
Tahereh Farkhondeh

: Age-dependent toxic effects of organophosphorus pesticides (OPs) have not fully understood. Current study aimed to investigate the cardiotoxic damage of chlorpyrifos (CPF) by evaluating oxidative modifications in young (2-month old), middle-aged (10-month old), and aged (20-month old) rats. Five mg/kg of CPF was administered orally for 45 days to young, middle-aged, and aged male Wistar rats. At the end, animals were anesthetized and the heart of each rat was dissected for biochemical assay. Malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), total antioxidant capacity (TAC), and superoxide dismutase (SOD) were assessed in the cardiac tissue of rats. The results indicated an increase in the levels of MDA and NO, and also a decline in the levels of GSH and TAC as well as a decrease in the SOD activity in the heart of aged rats compared with young rats. CPF administration deteriorated these changes in the heart of exposed rats compared with the age-matched controls. Additionally, these oxidative modifications were more severe in aged rats versus other age. In conclusion, advancing age may increase oxidative changes in the heart of animals exposed to CPF. It is suggested that aging can affect cardiac toxicity induced by OPs.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Siân Robinson ◽  
Cyrus Cooper ◽  
Avan Aihie Sayer

Prevention of age-related losses in muscle mass and strength is key to protecting physical capability in older age and enabling independent living. To develop preventive strategies, a better understanding is needed of the lifestyle factors that influence sarcopenia and the mechanisms involved. Existing evidence indicates the potential importance of diets of adequate quality, to ensure sufficient intakes of protein, vitamin D, and antioxidant nutrients. Although much of this evidence is observational, the prevalence of low nutrient intakes and poor status among older adults make this a current concern. However, as muscle mass and strength in later life are a reflection of both the rate of muscle loss and the peak attained in early life, efforts to prevent sarcopenia also need to consider diet across the lifecourse and the potential effectiveness of early interventions. Optimising diet and nutrition throughout life may be key to preventing sarcopenia and promoting physical capability in older age.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3699-3708 ◽  
Author(s):  
Genevieve Neal-Perry ◽  
Diane Lebesgue ◽  
Matthew Lederman ◽  
Jun Shu ◽  
Gail D. Zeevalk ◽  
...  

Reproductive success depends on a robust and appropriately timed preovulatory LH surge. The LH surge, in turn, requires ovarian steroid modulation of GnRH neuron activation by the neuropeptide kisspeptin and glutamate and γ-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges under estrogen-positive feedback conditions, in part, due to increased GABA and decreased glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced levels of Kiss1 mRNA in the anterior hypothalamus under estrogen-positive feedback conditions. Kisspeptin application directly into the mPOA rescues total LH release and the LH surge amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels seen in the mPOA of young females. Moreover, the N-methyl-d-aspartate receptor antagonist MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen-positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through modulation of mPOA glutamate and GABA release.


2011 ◽  
Vol 300 (4) ◽  
pp. R1001-R1008 ◽  
Author(s):  
Robert L. Thunhorst ◽  
Connie L. Grobe ◽  
Terry G. Beltz ◽  
Alan Kim Johnson

These experiments examined water-drinking and arterial blood pressure responses to β-adrenergic receptor activation in young (4 mo), “middle-aged” adult (12 mo), and old (29 mo) male rats of the Brown-Norway strain. We used isoproterenol to simultaneously activate β1- and β2-adrenergic receptors, salbutamol to selectively activate β2-adrenergic receptors, and the combination of isoproterenol and the β2-adrenergic receptor antagonist ICI 118,551 to stimulate only β1-adrenergic receptors. Animals received one of the drug treatments, and water drinking was measured for 90 min. About 1 wk later, animals received the same drug treatment for measurement of arterial blood pressure responses for 90 min. In some rats, levels of renin and aldosterone secretion in response to isoproterenol or salbutamol were measured in additional tests. Old and middle-aged rats drank significantly less after isoproterenol than did young rats and also had greater reductions in arterial blood pressure. Old and middle-aged rats drank significantly less after salbutamol than did young rats, although reductions in arterial blood pressure were equivalent across the ages. The β2-adrenergic antagonist ICI 118,551 abolished drinking after isoproterenol and prevented most of the observed hypotension. Renin secretion after isoproterenol and salbutamol was greater in young rats than in middle-aged rats, and wholly absent in old rats. Aldosterone secretion was reduced in old rats compared with young and middle-aged rats after treatment with isoproterenol, but not after treatment with salbutamol. In conclusion, there are age-related differences in β-adrenergic receptor-mediated drinking that can be explained only in part by age-related differences in renin secretion after β-adrenergic receptor stimulation.


2009 ◽  
Vol 102 (4) ◽  
pp. 2194-2207 ◽  
Author(s):  
David Murchison ◽  
Angelika N. McDermott ◽  
Candi L. LaSarge ◽  
Kathryn A. Peebles ◽  
Jennifer L. Bizon ◽  
...  

Alterations in neuronal Ca2+ homeostasis are important determinants of age-related cognitive impairment. We examined the Ca2+ influx, buffering, and electrophysiology of basal forebrain neurons in adult, middle-aged, and aged male F344 behaviorally assessed rats. Middle-aged and aged rats were characterized as cognitively impaired or unimpaired by water maze performance relative to young cohorts. Patch-clamp experiments were conducted on neurons acutely dissociated from medial septum/nucleus of the diagonal band with post hoc identification of phenotypic marker mRNA using single-cell RT-PCR. We measured whole cell calcium and barium currents and dissected these currents using pharmacological agents. We combined Ca2+ current recording with Ca2+-sensitive ratiometric microfluorimetry to measure Ca2+ buffering. Additionally, we sought changes in neuronal firing properties using current-clamp recording. There were no age- or cognition-related changes in the amplitudes or fractional compositions of the whole cell Ca2+ channel currents. However, Ca2+ buffering was significantly enhanced in cholinergic neurons from aged cognitively impaired rats. Moreover, increased Ca2+ buffering was present in middle-aged rats that were not cognitively impaired. Firing properties were largely unchanged with age or cognitive status, except for an increase in the slow afterhyperpolarization in aged cholinergic neurons, independent of cognitive status. Furthermore, acutely dissociated basal forebrain neurons in which choline acetyltransferase mRNA was detected had the electrophysiological profiles of identified cholinergic neurons. We conclude that enhanced Ca2+ buffering by cholinergic basal forebrain neurons may be important during aging.


2005 ◽  
Vol 99 (4) ◽  
pp. 1384-1390 ◽  
Author(s):  
Motohiko Miyachi ◽  
Hirofumi Tanaka ◽  
Hiroshi Kawano ◽  
Mayumi Okajima ◽  
Izumi Tabata

Reductions in basal leg blood flow have been implicated in the pathogenesis of metabolic syndrome and functional impairment in humans. We tested the hypothesis that reductions in basal whole leg blood flow with age are either absent or attenuated in those who perform regular strength training. A total of 104 normotensive men aged 20–34 yr (young) and 35–65 yr (middle aged), who were either sedentary or resistance trained, were studied. Mean and diastolic blood pressures were higher ( P < 0.05–0.001) in the middle-aged compared with the young men, but there were no significant differences between the sedentary and resistance-trained groups. In the sedentary group, basal whole leg blood flow (duplex Doppler ultrasound) and vascular conductance were lower (∼30 and ∼38%, respectively; P < 0.01) in the middle-aged compared with the young men. There were no such age-related differences in the resistance-trained group. In the young men, basal whole leg blood flow and vascular conductance were not different between the two activity groups, but, in the middle-aged men, they were higher (∼35 and ∼36%, respectively; P < 0.01) in the resistance-trained men than in the sedentary men. When blood flow and vascular conductance were expressed relative to the leg muscle mass, the results were essentially the same. We concluded that the age-related reduction in basal whole leg blood flow is absent in resistance-trained men. These results suggest that resistance training may favorably influence leg perfusion in aging humans, independent of its impact on leg muscle mass.


2009 ◽  
Vol 297 (1) ◽  
pp. R149-R157 ◽  
Author(s):  
Robert L. Thunhorst ◽  
Terry G. Beltz ◽  
Alan Kim Johnson

Compared to young cohorts, old rats drink less water in response to several thirst-inducing stimuli. In these experiments, we characterized water drinking in response to hypotension and cellular dehydration in young (4 mo), middle-aged adult (12 mo) and old (29–30 mo) male Brown Norway rats. We injected the vasodilator, minoxidil as an intravenous bolus in a range of doses (0–20 mg/kg), so that drinking responses could be compared at equivalent reductions of arterial pressure. Old rats had greatly diminished reflex tachycardia and became significantly more hypotensive after minoxidil compared with young and middle-aged rats. When compared at equivalent reductions of arterial pressure, old rats drank one-third as much as middle-aged rats, and one-fifth as much as young rats. In addition, there were age-related deficits in drinking in response to a range of administered loads of sodium (0.15–2 M NaCl, 2 ml/100 g body wt). Urinary excretion of water and sodium in response to the loads was equivalent across ages. Both middle-aged and old rats were less able than young rats to repair their water deficits after sodium loading, attributable almost entirely to their reduced drinking responses compared with young rats. Lastly, age-related declines in drinking appeared to be more severe in response to hypotension than in response to cellular dehydration.


Sign in / Sign up

Export Citation Format

Share Document