scholarly journals Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine

Endocrinology ◽  
2016 ◽  
Vol 157 (7) ◽  
pp. 2660-2670 ◽  
Author(s):  
Bradley R. Smither ◽  
Hilary Y. M. Pang ◽  
Patricia L. Brubaker

The intestinal hormone, glucagon-like peptide-2 (GLP-2), stimulates growth, survival, and function of the intestinal epithelium through increased crypt cell proliferation, and a long-acting analog has recently been approved to enhance intestinal capacity in patients with short bowel syndrome. The goal of the present study was to determine whether GLP-2-induced crypt cell proliferation requires a full complement of B-cell lymphoma Moloney murine leukemia virus insertion region-1 homolog (Bmi-1), using the Bmi-1eGFP/+ mouse model in comparison with age- and sex-matched Bmi-1+/+ littermates. Bmi-1 is a member of the polycomb-repressive complex family that promotes stem cell proliferation and self-renewal and is expressed by both stem cells and transit-amplifying (TA) cells in the crypt. The acute (6 h) and chronic (11 d) proliferative responses to long-acting human (Gly2)GLP-2 in the crypt TA zone, but not in the active or reserve stem cell zones, were both impaired by Bmi-1 haploinsufficiency. Similarly, GLP-2-induced crypt regeneration after 10-Gy irradiation was reduced in the Bmi-1eGFP/+ animals. Despite these findings, chronic GLP-2 treatment enhanced overall intestinal growth in the Bmi-1eGFP/+ mice, as demonstrated by increases in small intestinal weight per body weight and in the length of the crypt-villus axis, in association with decreased apoptosis and an adaptive increase in crypt epithelial cell migration rate. The results of these studies therefore demonstrate that a full complement of Bmi-1 is required for the intestinal proliferative effects of GLP-2 in both the physiological and pathological setting, and mediates, at least in part, the proliferation kinetics of cells in the TA zone.

Endocrinology ◽  
2007 ◽  
Vol 149 (1) ◽  
pp. 291-301 ◽  
Author(s):  
Philip E. Dubé ◽  
Katherine J. Rowland ◽  
Patricia L. Brubaker

Chronic administration of glucagon-like peptide-2 (GLP-2) induces intestinal growth and crypt cell proliferation through an indirect mechanism requiring IGF-I. However, the intracellular pathways through which IGF-I mediates GLP-2-induced epithelial tropic signaling remain undefined. Because β-catenin and Akt are important regulators of crypt cell proliferation, we hypothesized that GLP-2 activates these signaling pathways through an IGF-I-dependent mechanism. In this study, fasted mice were administered Gly2-GLP-2 or LR3-IGF-I (positive control) for 0.5–4 h. Nuclear translocation of β-catenin in non-Paneth crypt cells was assessed by immunohistochemistry and expression of its downstream proliferative markers, c-myc and Sox9, by quantitative RT-PCR. Akt phosphorylation and activation of its targets, glycogen synthase kinase-3β and caspase-3, were determined by Western blot. IGF-I receptor (IGF-IR) and IGF-I signaling were blocked by preadministration of NVP-AEW541 and through the use of IGF-I knockout mice, respectively. We found that GLP-2 increased β-catenin nuclear translocation in non-Paneth crypt cells by 72 ± 17% (P < 0.05) and increased mucosal c-myc and Sox9 mRNA expression by 90 ± 20 and 376 ± 170%, respectively (P < 0.05–0.01), with similar results observed with IGF-I. This effect of GLP-2 was prevented by blocking the IGF-IR as well as ablation of IGF-I signaling. GLP-2 also produced a time- and dose-dependent activation of Akt in the intestinal mucosa (P < 0.01), most notably in the epithelium. This action was reduced by IGF-IR inhibition but not IGF-I knockout. We concluded that acute administration of GLP-2 activates β-catenin and proliferative signaling in non-Paneth murine intestinal crypt cells as well as Akt signaling in the mucosa. However, IGF-I is required only for the GLP-2-induced alterations in β-catenin.


Development ◽  
2021 ◽  
pp. dev.194357
Author(s):  
Matthias Godart ◽  
Carla Frau ◽  
Diana Farhat ◽  
Maria Virginia Giolito ◽  
Catherine Jamard ◽  
...  

The thyroid hormone T3 and its nuclear receptor TRα1 control gut development and homeostasis through the modulation of intestinal crypt cell proliferation. Despite increasing data, in depth analysis on their specific action on intestinal stem cells is lacking.By using ex vivo 3D organoid cultures and molecular approaches we observed early responses to T3 involving the T3-metabolizing enzyme Dio1 and the transporter Mct10, accompanied by a complex response of stem cell- and progenitor-enriched genes. Interestingly, specific TRα1 loss-of-function (inducible or constitutive) was responsible for low ex vivo organoid development and impaired stem cell activity. T3-treatment of animals in vivo not only confirmed the positive action of this hormone on crypt cell proliferation but also demonstrated its key action in modulating i) the number of the stem cells, ii) the expression of their specific markers and iii) the commitment of progenitors into lineage-specific differentiation.In conclusion, T3 treatment or TRα1 modulation has a rapid and strong effect on intestinal stem cells, broadening our perspectives in the study of T3/TRα1-dependent signaling in these cells.


1997 ◽  
Vol 273 (1) ◽  
pp. E77-E84 ◽  
Author(s):  
C. H. Tsai ◽  
M. Hill ◽  
S. L. Asa ◽  
P. L. Brubaker ◽  
D. J. Drucker

Glucagon-like peptide-2 (GLP-2) has been shown to promote intestinal epithelial proliferation. We studied crypt cell proliferation, enterocyte cell death, and feeding behavior in GLP-2-treated mice. GLP-2 had no effect on food consumption [7.7 +/- 0.3 vs. 8.0 +/- 0.4 g/day, saline (control) vs. GLP-2-treated mice, P = not significant]; however, GLP-2 increased the crypt cell proliferation rate (46.0 +/- 1 vs. 57 +/- 5%, control vs. GLP-2, P < 0.01) and decreased the enterocyte apoptotic rate (5.9 +/- 0.7 vs. 2.8 +/- 0.2% apoptotic cells, control vs. GLP-2, P < 0.05) in small bowel (SB) epithelium. GLP-2 induced a significant increase in SB weight (1.3- to 1.75-fold increase over control, P < 0.05 to P < 0.001) in mice 1-24 mo of age. Increased SB weight was maintained after daily administration of GLP-2 to mice for 12 wk, and cessation of GLP-2 administration in older mice led to regression of (increased) SB weight and mucosal height. These observations suggest that GLP-2 regulates both cell proliferation and apoptosis and promotes intestinal growth after both short- and long-term administration in vivo.


2008 ◽  
Vol 295 (6) ◽  
pp. G1202-G1210 ◽  
Author(s):  
Catherine P. A. Ivory ◽  
Laurie E. Wallace ◽  
Donna-Marie McCafferty ◽  
David L. Sigalet

Glucagon-like peptide 2 (GLP-2) is an important intestinal growth factor with anti-inflammatory activity. We hypothesized that GLP-2 decreases mucosal inflammation and the associated increased epithelial proliferation by downregulation of Th1 cytokines attributable to reprogramming of lamina propria immune regulatory cells via an interleukin-10 (IL-10)-independent pathway. The effects of GLP-2 treatment were studied using the IL-10-deficient (IL-10−/−) mouse model of colitis. Wild-type and IL-10−/− mice received saline or GLP-2 (50 μg/kg sc) treatment for 5 days. GLP-2 treatment resulted in significant amelioration of animal weight loss and reduced intestinal inflammation as assessed by histopathology and myeloperoxidase levels compared with saline-treated animals. In colitis animals, GLP-2 treatment also reduced crypt cell proliferation and crypt cell apoptosis. Proinflammatory (IL-1β, TNF-α, IFN-γ,) cytokine protein levels were significantly reduced after GLP-2 treatment, whereas IL-4 was significantly increased and IL-6 production was unchanged. Fluorescence-activated cell sorting analysis of lamina propria cells demonstrated a decrease in the CD4+ T cell population following GLP-2 treatment in colitic mice and an increase in CD11b+/F4/80+ macrophages but no change in CD25+FoxP3 T cells or CD11c+ dendritic cells. In colitis animals, intracellular cytokine analysis demonstrated that GLP-2 decreased lamina propria macrophage TNF-α production but increased IGF-1 production, whereas transforming growth factor-β was unchanged. GLP-2-mediated reduction of crypt cell proliferation was associated with an increase in intestinal epithelial cell suppressor of cytokine signaling (SOCS)-3 expression and reduced STAT-3 signaling. This study shows that the anti-inflammatory effects of GLP-2 are IL-10 independent and that GLP-2 alters the mucosal response of inflamed intestinal epithelial cells and macrophages. In addition, the suggested mechanism of the reduction in inflammation-induced proliferation is attributable to GLP-2 activation of the SOCS-3 pathway, which antagonizes the IL-6-mediated increase in STAT-3 signaling.


2010 ◽  
Vol 252 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Carel W. le Roux ◽  
Cynthia Borg ◽  
Katharina Wallis ◽  
Royce P. Vincent ◽  
Marco Bueter ◽  
...  

Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2623-2632 ◽  
Author(s):  
Bernardo Yusta ◽  
Dianne Holland ◽  
James A. Waschek ◽  
Daniel J. Drucker

The enteroendocrine and enteric nervous systems convey signals through an overlapping network of regulatory peptides that act either as circulating hormones or as localized neurotransmitters within the gastrointestinal tract. Because recent studies invoke an important role for vasoactive intestinal peptide (VIP) as a downstream mediator of glucagon-like peptide-2 (GLP-2) action in the gut, we examined the importance of the VIP-GLP-2 interaction through analysis of Vip−/− mice. Unexpectedly, we detected abnormal villous architecture, expansion of the crypt compartment, increased crypt cell proliferation, enhanced Igf1 and Kgf gene expression, and reduced expression of Paneth cell products in the Vip−/− small bowel. These abnormalities were not reproduced by antagonizing VIP action in wild-type mice, and VIP administration did not reverse the intestinal phenotype of Vip−/− mice. Exogenous administration of GLP-2 induced the expression of ErbB ligands and immediate-early genes to similar levels in Vip+/+vs. Vip−/− mice. Moreover, GLP-2 significantly increased crypt cell proliferation and small bowel growth to comparable levels in Vip+/+vs. Vip−/− mice. Unexpectedly, exogenous GLP-2 administration had no therapeutic effect in mice with dextran sulfate-induced colitis; the severity of colonic injury and weight loss was modestly reduced in female but not male Vip−/− mice. Taken together, these findings extend our understanding of the complex intestinal phenotype arising from loss of the Vip gene. Furthermore, although VIP action may be important for the antiinflammatory actions of GLP-2, the Vip gene is not required for induction of a gene expression program linked to small bowel growth after enhancement of GLP-2 receptor signaling.


1992 ◽  
Vol 79 (6) ◽  
pp. 581-583 ◽  
Author(s):  
G. H. Barsoum ◽  
C. Hendrickse ◽  
M. C. Winslet ◽  
D. Youngs ◽  
I. A. Donovan ◽  
...  

2003 ◽  
Vol 285 (2) ◽  
pp. G424-G432 ◽  
Author(s):  
Deborah A. Swartz-Basile ◽  
Lihua Wang ◽  
Yuzhu Tang ◽  
Henry A. Pitt ◽  
Deborah C. Rubin ◽  
...  

In a prior study, vitamin A-deficient rats subjected to submassive small bowel resections did not mount a normal intestinal adaptive response by 10 days postoperatively, although adaptive increases in crypt cell proliferation were not attenuated and there were no differences in apoptotic indexes. The present study was designed to address the mechanisms by which vitamin A status effects adaptation by analyzing proliferation, apoptosis, and enterocyte migration in the early postoperative period (16 and 48 h) in vitamin A-sufficient, -deficient, and partially replenished sham-resected and resected rats. At 16 h postresection, apoptosis was significantly greater in the remnant ileum of resected vitamin A-deficient rats compared with the sufficient controls. Crypt cell proliferation was increased by resection in all dietary groups at both timepoints. However, at 48 h postresection, proliferation was significantly decreased in the vitamin A-deficient and partially replenished rats. By 48 h after resection, vitamin A deficiency also reduced enterocyte migration rates by 44%. This occurred in conjunction with decreased immunoreactive collagen IV at 48 h and 10 days postoperation. Laminin expression was also reduced by deficiency at 10 days postresection, whereas fibronectin and pancadherin were unchanged at 48 h and 10 days. These studies indicate that vitamin A deficiency inhibits intestinal adaptation following partial small bowel resection by reducing crypt cell proliferation, by enhancing early crypt cell apoptosis, and by markedly reducing enterocyte migration rates, which may be related to changes in the expression of collagen IV and other extracellular matrix components.


Sign in / Sign up

Export Citation Format

Share Document