Genome-Wide Analysis Reveals PADI4 Facilitates Transcriptional Activation of a Subset of Elk-1 Target Genes in MCF-7 Cells.

2010 ◽  
pp. P1-108-P1-108
Author(s):  
XS Zhang ◽  
MJ Gamble ◽  
S Stadler ◽  
BD Cherrington ◽  
MS Roberson ◽  
...  
2004 ◽  
Vol 101 (28) ◽  
pp. 10458-10463 ◽  
Author(s):  
A. W. Bruce ◽  
I. J. Donaldson ◽  
I. C. Wood ◽  
S. A. Yerbury ◽  
M. I. Sadowski ◽  
...  

2012 ◽  
Vol 33 (3) ◽  
pp. 530-540 ◽  
Author(s):  
Nathalie Boone ◽  
Aurélie Bergon ◽  
Béatrice Loriod ◽  
Arnaud Devèze ◽  
Catherine Nguyen ◽  
...  

2020 ◽  
Vol 117 (6) ◽  
pp. 3261-3269 ◽  
Author(s):  
Yu Zhang ◽  
Anne Pfeiffer ◽  
James M. Tepperman ◽  
Jutta Dalton-Roesler ◽  
Pablo Leivar ◽  
...  

Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown “trans factors” modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins. Here, using computational analysis of published data, we have identified PSEUDO-RESPONSE REGULATORS (PRR5 and PRR7) as displaying a high frequency of colocalization with the PIF proteins at their binding sites in the promoters of PIF Direct Target Genes (DTGs). We show that the PRRs function to suppress PIF-stimulated growth in the light and vegetative shade and that they repress the rapid PIF-induced expression of PIF-DTGs triggered by exposure to shade. The repressive action of the PRRs on both growth and DTG expression requires the PIFs, indicating direct action on PIF activity, rather than a parallel antagonistic pathway. Protein interaction assays indicate that the PRRs exert their repressive activity by binding directly to the PIF proteins in the nucleus. These findings support the conclusion that the PRRs function as direct outputs from the core circadian oscillator to regulate the expression of PIF-DTGs through modulation of PIF transcriptional activation activity, thus expanding the roles of the multifunctional PIF-signaling hub.


2020 ◽  
Vol 295 (13) ◽  
pp. 4212-4223 ◽  
Author(s):  
Chun Guo ◽  
Jian Li ◽  
Nickolas Steinauer ◽  
Madeline Wong ◽  
Brent Wu ◽  
...  

In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1–eight–twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1–ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1–ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1–ETO and RUNX1 co-occupy the binding sites of AML1–ETO–activated genes. How this joined binding allows RUNX1 to antagonize AML1–ETO–mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1–ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1–ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1–ETO–activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1–ETO–dependent transcription, a finding further supported by results of genome-wide analyses of AML1–ETO–activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1–ETO/RUNX1 cistrome.


Nature ◽  
2007 ◽  
Vol 445 (7130) ◽  
pp. 936-940 ◽  
Author(s):  
Ye Zheng ◽  
Steven Z. Josefowicz ◽  
Arnold Kas ◽  
Tin-Tin Chu ◽  
Marc A. Gavin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document