scholarly journals Stimulation of Central and Systemic Oxytocin Release by Histamine in the Paraventricular Hypothalamic Nucleus: Evidence for an Interaction with Norepinephrine*

Endocrinology ◽  
1999 ◽  
Vol 140 (3) ◽  
pp. 1158-1164 ◽  
Author(s):  
Steven L. Bealer ◽  
William R. Crowley
Pain ◽  
2006 ◽  
Vol 122 (1) ◽  
pp. 182-189 ◽  
Author(s):  
Yuritzia Miranda-Cardenas ◽  
Gerardo Rojas-Piloni ◽  
Guadalupe Martínez-Lorenzana ◽  
Javier Rodríguez-Jiménez ◽  
Mónica López-Hidalgo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


1994 ◽  
Vol 195 (1) ◽  
pp. 19-34
Author(s):  
A Raji ◽  
J J Nordmann

1. In many mammals, severe dehydration is known to cause exhaustion of the vasopressin content of the neural lobe. Here, we have examined the physiological state of the neurohypophysis of the jerboa Jaculus orientalis, a rodent inhabitant of a semi-desert climate. 2. Isolated neurohypophyses and neurosecretory nerve endings were perfused in vitro and vasopressin and oxytocin release were determined by radioimmunoassay. 3. Electrical stimulation of the neurohypophysis with bursts of pulses mimicking the activity of hypersecreting neuroendocrine neurones induced similar increases of secretion in both control animals and animals dehydrated for up to 2 months. Neurohormone release was greatly potentiated when the bursts of pulses were separated by silent intervals. 4. Prolonged stimulation of neurohypophyses from both control and dehydrated animals induced a sustained increase of vasopressin release; in contrast, oxytocin release under similar conditions showed a biphasic secretory pattern consisting of a transient increase that subsequently decreased to a steady level whose amplitude was similar to that for vasopressin. 5. K(+)-induced secretion was largely inhibited by the Ca2+ channel blockers nicardipine and omega-conotoxin, suggesting that in this neurosecretory system both L- and N-type calcium channels play a major role in stimulus-secretion coupling. Depolarization of isolated nerve endings using a fast-flow perifusion system showed that there was no difference in the amplitude and the time course of the secretory response in dehydrated and hydrated animals. 6. The results demonstrate that, despite the climatic conditions in which the jerboas live, their neural lobes retain the capacity to release, upon depolarization of the plasma membrane of the nerve endings, large amounts of neurohormone. It is concluded that the neurohypophyseal peptidergic release system in the dehydrated jerboa functions adequately even under extreme environmental stress.


2017 ◽  
Vol 46 (5) ◽  
pp. 2133-2140 ◽  
Author(s):  
Miguel Domínguez ◽  
Raúl Aguilar‐Roblero ◽  
Gabriela González‐Mariscal

Sign in / Sign up

Export Citation Format

Share Document