Growth hormone-induced STAT5B regulates Star gene expression through a cooperation with cJUN in mouse MA-10 Leydig cells

Endocrinology ◽  
2021 ◽  
Author(s):  
Pierre-Olivier Hébert-Mercier ◽  
Francis Bergeron ◽  
Nicholas M Robert ◽  
Samir Mehanovic ◽  
Kenley Joule Pierre ◽  
...  

Abstract Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown. The STAT5B transcription factor is a downstream effector of GH signaling in other systems. While STAT5B is present in both primary and Leydig cell lines, its function in these cells has yet to be ascertained. Here we report that treatment of MA-10 Leydig cells with GH or overexpression of STAT5B induces Star mRNA levels and increases steroid hormone output. The mouse Star promoter contains a consensus STAT5B element (TTCnnnGAA) at -756 bp to which STAT5B binds in vitro (EMSA and supershift) and in vivo (ChIP) in a GH-induced manner. In functional promoter assays, STAT5B was found to activate a -980 bp mouse Star reporter. Mutating the -756 bp element prevented STAT5B binding but did not abrogate STAT5B-responsiveness. STAT5B was found to functionally cooperate with DNA-bound cJUN. The STAT5B/cJUN cooperation was only observed in Leydig cells and not in Sertoli or fibroblast cells, indicating that additional Leydig cell-enriched transcription factors are required. The STAT5B/cJUN cooperation was lost only when both STAT5B and cJUN elements were mutated. In addition to identifying the Star gene as a novel target for STAT5B in Leydig cells, our data provide important new insights into the mechanism of GH and STAT5B action in the regulation of Leydig cell function.

2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


1995 ◽  
Vol 134 (1) ◽  
pp. 18-25 ◽  
Author(s):  
L.B. Biegel ◽  
R.C.M. Liu ◽  
M.E. Hurtt ◽  
J.C. Cook

2018 ◽  
Vol 374 (2) ◽  
pp. 389-412 ◽  
Author(s):  
M. Kotula-Balak ◽  
P. Pawlicki ◽  
A. Milon ◽  
W. Tworzydlo ◽  
M. Sekula ◽  
...  

2013 ◽  
Vol 33 (10) ◽  
pp. 1017-1039 ◽  
Author(s):  
Pallav Sengupta ◽  
Rajdeb Banerjee

This review comprehensively summarizes the effects of more than 15 mostly used pesticides on male reproductive physiology, as recent experimental and epidemiological research have indicated their alarming impact on overall human health. Mechanisms have described that pesticide exposure damages spermatozoa, alter Sertoli or Leydig cell function, both in vitro and in vivo and thus affects semen quality. But, the literature suggests a need for more intricate research in those pesticides that are defined as mutagens or carcinogens and directly affect the hypothalamic–pituitary–gonadal axis. This literature review also proposes specific solutions to overcome these health effects.


Metabolism ◽  
1994 ◽  
Vol 43 (5) ◽  
pp. 533-537 ◽  
Author(s):  
Joseph Tai ◽  
Wah Jun Tze ◽  
Noriko Murase ◽  
Thomas E. Starzl

1985 ◽  
Vol 132 (2) ◽  
pp. 729-734 ◽  
Author(s):  
M. Benahmed ◽  
C. Grenot ◽  
E. Tabone ◽  
P. Sanchez ◽  
A.M. Morera

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 870 ◽  
Author(s):  
Peter Lansdorp ◽  
Niek van Wietmarschen

Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.


2001 ◽  
Vol 168 (1) ◽  
pp. 95-105 ◽  
Author(s):  
C Genissel ◽  
J Levallet ◽  
S Carreau

Regulation of aromatase gene expression in purified rat Leydig cells has not yet been investigated. Therefore, using a highly specific quantitative RT-PCR method, we have measured the amount of cytochrome P450 aromatase (P450arom) mRNA and aromatase activity in mature rat Leydig cells submitted to various treatments during 24 h. Estradiol production was enhanced in a dose-related manner in the presence of testosterone, the maximum (28% increase) being obtained with 200 ng/ml. Related to the P450arom mRNA levels, a decrease was observed in the presence of low concentrations (50 and 100 ng/ml) of testosterone, then a 20% increase of the amount of transcripts was recorded for the higher concentrations (200-500 ng/ml). The same result was obtained in the presence of 5alpha-dihydrotestosterone (an androgen resistant to aromatase activity). The addition of ovine LH (oLH; 0.1-50 ng/ml) to the Leydig cell culture medium induced a dose-related augmentation of estradiol output up to 10 ng/ml oLH, although a decrease was observed with 50 ng/ml when compared with maximal values. mRNA levels slightly decreased in the presence of low concentrations (0.1-1 ng/ml) of oLH, an effect that was abolished by the addition of testosterone; mRNA levels were increased by oLH (5-10 ng/ml) 35 and 75% respectively in the absence and presence of testosterone (when compared with Leydig cells incubated without treatment). With 50 ng/ml oLH, a large augmentation (twofold) of the P450arom mRNA level either without or with testosterone was observed. Dibutyryl cyclic AMP (1 mM) mimicked the effect of oLH. The half-life of the P450arom mRNAs was twofold increased in the presence of testosterone and oLH when compared with the half-life in the absence of treatment (5.8+/-0.6 h). Taken together, our data have demonstrated that, in freshly isolated Leydig cells from mature rat testes, the regulation of aromatase expression and enzymatic activity is under LH (through cyclic AMP) and steroid control; moreover seminiferous tubule-secreted factor(s) are also involved. Therefore, rat Leydig cell aromatase is controlled at both transcriptional and post-transcriptional steps by endocrine and/or locally produced modulators.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chien-Chih Ke ◽  
Ya-Ju Hsieh ◽  
Luen Hwu ◽  
Fu-Hui Wang ◽  
Fu-Du Chen ◽  
...  

Anaplastic thyroid carcinoma (ATC) is one of the most deadly cancers. With intensive multimodalities of treatment, the survival remains low. ATC is not sensitive to131I therapy due to loss of sodium iodide symporter (NIS) gene expression. We have previously generated a stable human NIS-expressing ATC cell line, ARO, and the ability of iodide accumulation was restored. To make NIS-mediated gene therapy more applicable, this study aimed to establish a lentiviral system for transferring hNIS gene to cells and to evaluate the efficacy of in vitro and in vivo radioiodide accumulation for imaging and therapy. Lentivirus containing hNIS cDNA were produced to transduce ARO cells which do not concentrate iodide. Gene expression, cell function, radioiodide imaging and treatment were evaluated in vitro and in vivo. Results showed that the transduced cells were restored to express hNIS and accumulated higher amount of radioiodide than parental cells. Therapeutic dose of131I effectively inhibited the tumor growth derived from transduced cells as compared to saline-treated mice. Our results suggest that the lentiviral system efficiently transferred and expressed hNIS gene in ATC cells. The transduced cells showed a promising result of tumor imaging and therapy.


Sign in / Sign up

Export Citation Format

Share Document