scholarly journals Increased Triacylglycerol Lipase Activity in Adipose Tissue of Lean and Obese Men During Endurance Exercise

2017 ◽  
Vol 102 (11) ◽  
pp. 3945-3952 ◽  
Author(s):  
Anatoli Petridou ◽  
Athanasios Chatzinikolaou ◽  
Alexandra Avloniti ◽  
Athanasios Jamurtas ◽  
Gedeon Loules ◽  
...  

Abstract Context Although there is increasing information on the mechanism of lipolysis in adipose tissue, the effect of exercise on individual factors of lipolysis is less well understood. Objective We compared changes in adipose-tissue triacylglycerol lipase activity and gene expression of adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase (HSL), monoacylglycerol lipase, perilipin 1, and comparative gene identification 58 (CGI-58) during exercise between lean and obese men. Design and Participants Seven lean and nine obese men cycled for 30 minutes at a heart rate of 130 to 140 beats per minute. At baseline and 5, 10, 20, and 30 minutes of exercise, we sampled subcutaneous adipose tissue for triacylglycerol lipase activity and mRNA determination, and blood for glycerol, nonesterified fatty acid, glucose, lactate, insulin, and catecholamine determination. Setting The study was conducted at a university research unit. Results Triacylglycerol lipase activity increased at 10 minutes of exercise in the lean men and returned to baseline at 20 and 30 minutes. In the obese men, it was higher than baseline at 10, 20, and 30 minutes and higher than the corresponding values in the lean men at 20 and 30 minutes. No changes in mRNA levels were found during exercise, but the obese men had lower mRNA levels of ATGL, HSL, and CGI-58 compared with the lean men. Conclusion Our findings suggest different patterns of lipolytic stimulation during endurance exercise between lean and obese men. Differences in lipolytic rates seem to be due to differences in protein amount or activity, not mRNA levels.

1998 ◽  
Vol 83 (2) ◽  
pp. 626-631 ◽  
Author(s):  
Jaswinder S. Samra ◽  
Mo L. Clark ◽  
Sandy M. Humphreys ◽  
Ian A. MacDonald ◽  
Peter A. Bannister ◽  
...  

Cortisol is known to increase whole body lipolysis, yet chronic hypercortisolemia results in increased fat mass. The main aim of the study was to explain these two apparently opposed observations by examining the acute effects of hypercortisolemia on lipolysis in subcutaneous adipose tissue and in the whole body. Six healthy subjects were studied on two occasions. On one occasion hydrocortisone sodium succinate was infused iv to induce hypercortisolemia (mean plasma cortisol concentrations, 1500 ± 100 vs. 335± 25 nmol/L; P < 0.001); on the other occasion (control study) no intervention was made. Lipolysis in the sc adipose tissue of the anterior abdominal wall was studied by measurement of arterio-venous differences, and lipolysis in the whole body was studied by constant infusion of[ 1,2,3-2H5]glycerol for measurement of the systemic glycerol appearance rate. Hypercortisolemia led to significantly increased arterialized plasma nonesterified fatty acid (NEFA; P < 0.01) and blood glycerol concentrations (P < 0.05), with an increase in systemic glycerol appearance (P < 0.05). However, in sc abdominal adipose tissue, hypercortisolemia decreased veno-arterialized differences for NEFA (P < 0.05) and reduced NEFA efflux (P < 0.05). This reduction was attributable to decreased intracellular lipolysis (P < 0.05), reflecting decreased hormone-sensitive lipase action in this adipose depot. Hypercortisolemia caused a reduction in arterialized plasma TAG concentrations (P < 0.05), but without a significant change in the local extraction of TAG (presumed to reflect the action of adipose tissue lipoprotein lipase). There was no significant difference in plasma insulin concentrations between the control and hypercortisolemia study. Site-specific regulation of the enzymes of intracellular lipolysis (hormone-sensitive lipase) and intravascular lipolysis (lipoprotein lipase) may explain the ability of acute cortisol treatment to increase systemic glycerol and NEFA appearance rates while chronically promoting net central fat deposition.


1996 ◽  
Vol 271 (3) ◽  
pp. E541-E546 ◽  
Author(s):  
J. S. Samra ◽  
M. L. Clark ◽  
S. M. Humphreys ◽  
I. A. Macdonald ◽  
K. N. Frayn

We studied changes in lipid metabolism in adipose tissue in 24 healthy adults during early starvation (14-20 h) by cannulating the venous drainage of the subcutaneous adipose tissue of the anterior abdominal wall. Net nonesterified fatty acid (NEFA) efflux from adipose tissue increased steadily from 1,790 +/- 300 to 2,360 +/- 290 nmol.100 g-1.min-1 (P = 0.03), due to increasing transcapillary efflux of NEFA (release from adipocytes; P < 0.01). The reesterification rate after an overnight fast was close to zero; thus, reduction in the rate of reesterification played no part in the increased transcapillary efflux of NEFA. One-quarter of the net efflux of NEFA after an overnight fast arose from the action of lipoprotein lipase (LPL), although this relative contribution decreased during the study (P < 0.02). The increased transcapillary efflux of NEFA reflected a significant increase in the rate of action of hormone-sensitive lipase (HSL; P = 0.03). There was a strong relationship between mean arterial NEFA concentration and net NEFA release from adipose tissue (P < 0.001), implying that the particular depot studied reflects the behavior of adipose tissue as a whole. Thus the increasing efflux of NEFA from adipose tissue observed during early starvation is due to an increased rate of action of HSL, which may in turn be regulated by a fall in the plasma insulin concentration.


1976 ◽  
Vol 50 (4) ◽  
pp. 315-318
Author(s):  
Y. Giudicelli ◽  
R. Pecquery ◽  
B. Agli ◽  
C. Jamin ◽  
J. Quevauvilliers

1. Lipoprotein lipase activity and hormone-sensitive lipase activity were investigated in subcutaneous lipomas removed from two patients and compared with the enzyme activities in subcutaneous adipose tissue from two normal subjects. 2. Confirmation was obtained of the presence of lipoprotein lipase activity in lipomas with an activity fifteen to forty-five times that in the two control samples. 3. Hormone-sensitive lipase activity was demonstrated in lipomas under basal conditions of assay as well as in the presence of adrenaline plus theophylline. However, compared with the non-lipomatous fat samples, these activities were lower, as was the magnitude of the lipolytic response to adrenaline plus theophylline. 4. The significance of these measurements of enzyme activity and their role in the pathogenesis of lipomas are briefly discussed.


1976 ◽  
Vol 230 (2) ◽  
pp. 385-388 ◽  
Author(s):  
JA McGarr ◽  
LB Oscai ◽  
J Borensztajn

Hormone-sensitive lipase activity was measured in adipocytes of rats subjected to a 12-wk program of treadmill running. Enzyme activity in the runners sacrificed immediately after exercise increased 2.5-fold (P less than 0.001) in tissue exposed to epinephrine and threefold (P less than 0.001) in tissue not exposed to epinephrine, when the results were expressed per gram of adipose tissue. Increases of almost the same magnitude were observed in runners sacrificed 24 h after their last bout of work. These significant increases in enzyme activity, however, were the result of a significant reduction in the size of cells in the epididymal fat pads of the exercisers compared with those of the freely eating sedentary animals (68.7 +/- 2.7 mum vs. 82.0 +/- 2.7 mum; P less than 0.01). When the results were expressed on a per-cell basis, therefore, hormone-sensitive lipase activity, assayed in the presence or absence of epinephrine, was unaffected by the exercise program. These results provide evidence that the lipolytic capacity of adipocytes of normal, untrained rats is sufficiently large to meet the increased demand for free fatty acids imposed by the exercise program without the need for an adaptive increase in enzyme activity.


1999 ◽  
Vol 277 (5) ◽  
pp. E830-E837 ◽  
Author(s):  
Hubert Vidal ◽  
Dominique Langin ◽  
Fabrizio Andreelli ◽  
Laurence Millet ◽  
Dominique Larrouy ◽  
...  

Skeletal muscle uncoupling protein 2 and 3 (UCP-2 and UCP-3) mRNA levels are increased during calorie restriction in lean and nondiabetic obese subjects. In this work, we have investigated the effect of a 5-day hypocaloric diet (1,045 kJ/day) on UCP-2 and UCP-3 gene expression in the skeletal muscle of type-2 diabetic obese patients. Before the diet, UCP-2 and UCP-3 mRNA levels were more abundant in diabetic than in nondiabetic subjects. The long (UCP-3L) and short (UCP-3S) forms of UCP-3 transcripts were expressed at similar levels in nondiabetic subjects, but UCP-3S transcripts were twofold more abundant than UCP-3Ltranscripts in the muscle of diabetic patients. Calorie restriction induced a two- to threefold increase in UCP-2 and UCP-3 mRNA levels in nondiabetic patients. No change was observed in type-2 diabetic patients. Variations in plasma nonesterified fatty acid level were positively correlated with changes in skeletal muscle UCP-3L( r = 0.6, P < 0.05) and adipose tissue hormone-sensitive lipase ( r = 0.9, P < 0.001) mRNA levels. Lack of increase in plasma nonesterified fatty acid level and in hormone-sensitive lipase upregulation in diabetic patients during the diet strengthens the hypothesis that fatty acids are associated with the upregulation of uncoupling proteins during calorie restriction.


Sign in / Sign up

Export Citation Format

Share Document