Iodide Symporter Gene Expression in Human Thyroid Tumors

1998 ◽  
Vol 83 (7) ◽  
pp. 2493-2496 ◽  
Author(s):  
F. Arturi
2008 ◽  
Vol 93 (10) ◽  
pp. 4080-4087 ◽  
Author(s):  
E. Ferretti ◽  
E. Tosi ◽  
A. Po ◽  
A. Scipioni ◽  
R. Morisi ◽  
...  

Context: Notch genes encode receptors for a signaling pathway that regulates cell growth and differentiation in various contexts, but the role of Notch signaling in thyroid follicular cells has never been fully published. Objective: The objective of the study was to characterize the expression of Notch pathway components in thyroid follicular cells and Notch signaling activities in normal and transformed thyrocytes. Design/Setting and Patients: Expression of Notch pathway components and key markers of thyrocyte differentiation was analyzed in murine and human thyroid tissues (normal and tumoral) by quantitative RT-PCR and immunohistochemistry. The effects of Notch overexpression in human thyroid cancer cells and FTRL-5 cells were explored with analysis of gene expression, proliferation assays, and experiments involving transfection of a luciferase reporter construct containing human NIS promoter regions. Results: Notch receptors are expressed during the development of murine thyrocytes, and their expression levels parallel those of thyroid differentiation markers. Notch signaling characterized also normal adult thyrocytes and is regulated by TSH. Notch pathway components are variably expressed in human normal thyroid tissue and thyroid tumors, but expression levels are clearly reduced in undifferentiated tumors. Overexpression of Notch-1 in thyroid cancer cells restores differentiation, reduces cell growth rates, and stimulates NIS expression via a direct action on the NIS promoter. Conclusion: Notch signaling is involved in the determination of thyroid cell fate and is a direct regulator of thyroid-specific gene expression. Its deregulation may contribute to the loss of differentiation associated with thyroid tumorigenesis.


Author(s):  
C. Hoang-Vu ◽  
H. Leitolf ◽  
G. F. W. Scheumann ◽  
H. Dralle ◽  
A. von zur Mühlen ◽  
...  

1984 ◽  
Vol 2 (1) ◽  
pp. 65-66
Author(s):  
J. deCertaines ◽  
J.Y. Herry ◽  
G. Lancien ◽  
L. Benoist ◽  
A.M. Bernard ◽  
...  

Author(s):  
Viola Calabr� ◽  
Maria Strazzullo ◽  
Girolama La Mantia ◽  
Monica Fedele ◽  
Christian Paulin ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5107-5117 ◽  
Author(s):  
Agnès Burniat ◽  
Ling Jin ◽  
Vincent Detours ◽  
Natacha Driessens ◽  
Jean-Christophe Goffard ◽  
...  

We studied gene expression profiles in two mouse models of human thyroid carcinoma: the Tg-RET/PTC3 (RP3) and Tg-E7 mice. RP3 fusion gene is the most frequent mutation found in the first wave post-Chernobyl papillary thyroid cancers (PTCs). E7 is an oncoprotein derived from the human papillomavirus 16 responsible for most cervical carcinoma in women. Both transgenic mice develop thyroid hyperplasia followed by solid differentiated carcinoma in older animals. To understand the different steps leading to carcinoma, we analyzed thyroid gene expression in both strains at different ages by microarray technology. Important biological processes were differentially regulated in the two tumor types. In E7 thyroids, cell cycle was the most up-regulated process, an observation consistent with the huge size of these tumors. In RP3 thyroids, contrary to E7 tumors, several human PTC characteristics were observed: overexpression of many immune-related genes, regulation of human PTC markers, up-regulation of EGF-like growth factors and significant regulation of angiogenesis and extracellular matrix remodeling-related genes. However, similarities were incomplete; they did not concern the overall gene expression and were not conserved in old animals. Therefore, RP3 tumors are partial and transient models of human PTC. They constitute a good model, especially in young animals, to study the respective role of the biological processes shared with human PTC and will allow testing drugs targeting these validated variables.


Sign in / Sign up

Export Citation Format

Share Document