scholarly journals SAT-552 Epigenetic Regulation of 11beta-Hydroxysteroid Dehydrogenase 1 and 2 Gene in Salt-Sensitive Hypertensive Rats

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yoshiyu Takeda ◽  
Yoshimichi Takeda ◽  
Shigehiro Karashima ◽  
Mitsuhiro Kometani ◽  
Atsushi Hashimoto ◽  
...  

Abstract ENDO 2020 Epigenetic regulation of 11beta-hydroxysteroid dehydrogenase 1 and 2 gene in salt-sensitive hypertensive rats [Objective]11Beta-hydroxysteroid dehydrogenase type1 (11-HSD1) is the modulator of glucocorticoid hormone and type2 (11-HSD2) is the modulator of mineralocorticoid hormone. We investigated the effect of high salt diet on the methylation of both enzyme gene in salt-sensitive hypertensive (SSH) rats [Methods]SSH rats were fed a high (7% NaCl) or normal (0.45%) salt chow for 4 weeks. Body weight, blood pressure, plasma and urinary aldosterone concentration and PRA were measured. DNA was extracted from kidneys and visceral fats. Bisulfite sequencing and Pyrosequencing were done for the analysis of methylation status of 11-HSD1 and 2 gene. [Results] High salt diet significantly decreased methylation ratio of 11-HSD1 gene in the visceral fats of SSH rats compared with controls (p<0.05). The methylation ratio of 11-HSD2 gene in the kidney of SSH rats was not influenced by high salt diet. [Discussion and Conclusion]11-HSD1 overexpression in visceral fats in mice was reported to show SSH. We reported decreased 11-HSD2 activity in the artery in SSH rats. In this study high salt diet affected methylation status of 11-HSD1 in the adipose tissue but not 11-HSD2 gene in the kidney in SSH. Food intake such as salt may influence the epigenesis of 11-HSD and induce hypertension.

Steroids ◽  
2009 ◽  
Vol 74 (12) ◽  
pp. 978-982 ◽  
Author(s):  
Mikiya Usukura ◽  
Aoshuang Zhu ◽  
Takashi Yoneda ◽  
Shigehiro Karashima ◽  
Kunimasa Yagi ◽  
...  

1997 ◽  
Vol 273 (2) ◽  
pp. H869-H877 ◽  
Author(s):  
Y. Liu ◽  
K. T. Fredricks ◽  
R. J. Roman ◽  
J. H. Lombard

This study assessed vasodilator responses in skeletal muscle resistance arteries (100-250 microns) from rats with chronic (4-8 wk) reduced renal mass (RRM) hypertension and normotensive sham-operated controls on a high (4% NaCl; HSSHAM)- or low (0.4% NaCl; LSSHAM)-salt diet. Arteries from RRM hypertensive rats [normal and high-salt diet (HSRRM)] and a separate group of spontaneously hypertensive rats exhibited an impaired dilation in response to reduced PO2 compared with those of their normotensive controls. Prostacyclin release, assessed by radio-immunoassay for 6-ketoprostaglandin F1 alpha, increased significantly in response to reduced PO2, but was unaffected by hypertension or salt intake. Dilator responses to acetylcholine and the prostacyclin analog iloprost were significantly reduced in both HSRRM and HSSHAM compared with LSSHAM rats. Dilation in response to direct activation of adenylate cyclase with forskolin or guanylate cyclase with the nitric oxide donor sodium nitroprusside was not significantly different in HSRRM, HSSHAM, and LSSHAM rats. These results indicate that hypoxic dilation is impaired in skeletal muscle resistance arteries of hypertensive rats and that chronic high-salt diet alone leads to impaired vasodilator responses in resistance arteries of normotensive animals, possibly via abnormalities in membrane function or G protein signaling rather than impaired second-messenger function.


2020 ◽  
Vol 21 (6) ◽  
pp. 2248 ◽  
Author(s):  
Abu Sufiun ◽  
Asadur Rahman ◽  
Kazi Rafiq ◽  
Yoshihide Fujisawa ◽  
Daisuke Nakano ◽  
...  

The aim of the present study is to investigate whether a disruption of the dipping pattern of blood pressure (BP) is associated with the progression of renal injury in Dahl salt-sensitive (DSS) hypertensive rats. Seven-week-old DSS rats were fed a high salt diet (HSD; 8% NaCl) for 10 weeks, followed by a transition to a normal salt diet (NSD; 0.3% NaCl) for 4 weeks. At baseline, NSD-fed DSS rats showed a dipper-type circadian rhythm of BP. By contrast, HSD for 5 days caused a significant increase in the difference between the active and inactive periods of BP with an extreme dipper type of BP, while proteinuria and renal tissue injury were not observed. Interestingly, HSD feeding for 10 weeks developed hypertension with a non-dipper pattern of BP, which was associated with obvious proteinuria and renal tissue injury. Four weeks after switching to an NSD, BP and proteinuria were significantly decreased, and the BP circadian rhythm returned to the normal dipper pattern. These data suggest that the non-dipper pattern of BP is associated with the progression of renal injury during the development of salt-dependent hypertension.


2013 ◽  
Vol 305 (12) ◽  
pp. H1781-H1789 ◽  
Author(s):  
Gustavo R. Pedrino ◽  
Alfredo S. Calderon ◽  
Mary Ann Andrade ◽  
Sergio L. Cravo ◽  
Glenn M. Toney

Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg−1·min−1 sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats ( P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats ( P < 0.01). Extracellular single unit recordings in HT ( n = 28) and NT ( n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater ( P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.


2017 ◽  
Vol 16 (3) ◽  
pp. 62-69
Author(s):  
A. G. Kucher ◽  
O. N. Beresneva ◽  
M. M. Parastaeva ◽  
G. T. Ivanova ◽  
M. I. Zarajsky ◽  
...  

Objective. To study the influence of diet containing high or normal NaCl on the arterial blood pressure level (BP), heart rate (HR), processes of myocardial remodeling and of nuclear transcription factor kB (NFkB) expression in myocardium and kidney in spontaneously hypertensive rats (SHR). Design and methods. The two groups of male SHRs received a diet with normal (0.34 %; n = 24, control) and high content of NaCl (8.0 %; n = 25; experimental group) for 2 months. Blood pressure (BP), heart rate (HR), cardiac left ventricular mass index (LVMI), left (LKMI) and right (RKMI) kidney mass indexes were determined. Morphological study of myocardium (light microscopy), including quantitative morphometry was carried out. In part of animals the relative level of NFkB gene expression in heart and kidney tissues was studied. Results and discussion. In rats fed a diet containing 8 % NaCl BP and HR did not change significantly compared with the control. However, LVMI, RKMI, LKMI were significantly higher in high-salt diet-treated animals than in controls. The heart of high-salt diet-treated animals developed the changes leading to hypertrophy and possibly hyperplasia of cardiomyocytes. In these animals, perivascular fibrosis, significant increase of arterial wall thickness and vacuolization of smooth muscle cells were revealed. The relative level of NFKB gene expression in rats receiving high-salt diet was 33-fold higher in myocardium and 12-fold higher in kidneys than in animals fed a normal salt diet. Conclusion. The high-salt diet is not necessarily accompanied by an increase in blood pressure, but causes myocardial remodeling, apparently due to direct «toxic» effects. The negative impact on the cardiovascular system of high-salt diet is in part mediated through NFkB-associated signaling pathways. Furthermore, high NaCl diet causes activation of NFkB in the kidneys.


1996 ◽  
Vol 271 (4) ◽  
pp. F824-F830 ◽  
Author(s):  
C. Wang ◽  
C. Chao ◽  
L. M. Chen ◽  
L. Chao ◽  
J. Chao

Tissue kallikrein cleaves low-molecular-weight (low-M(r)) kininogen to produce the vasoactive kinin peptide. It has been suggested that hypertensive patients with low urinary kallikrein excretion may have a defect in sodium handling. In this study, we examined the effect of a high-salt diet on the expression of tissue kallikrein and kininogen genes in Dahl salt-sensitive rats (Dahl-SS), spontaneously hypertensive rats (SHR), and normotensive Sprague-Dawley rats (SD) by Northern and Western blot analysis and radioimmunoassay. Control and experimental groups received normal and high-salt diets containing 0.4% and 8% NaCl, respectively, for 6 wk. High-salt diet induced a significant time-dependent increase of blood pressure in both strains of hypertensive rats and a slight but significant increase of blood pressure in normotensive SD rats. Hepatic kininogen mRNA levels of both Dahl-SS and SHR on a high-salt diet increased 2.4-fold and 2.0-fold, respectively, while alpha 1-antitrypsin mRNA levels were not changed in rats receiving high-salt diet. Immunoreactive total kininogen and low-M(r) kininogen (58 kDa) levels in sera increased in response to high-salt diet in both strains of hypertensive rats. In SD rats, the low-M(r) kininogen level in sera was unaltered, whereas total kininogen increased in response to high-salt diet. Tissue kallikrein mRNAs in the kidney and salivary glands of Dahl-SS, SHR, and SD rats were reduced, whereas beta-actin mRNA was not altered by high-salt diet. Similarly, immunoreactive intrarenal kallikrein levels were reduced in these rats in response to high-salt diet. These studies show that increases in blood pressure after salt loading in Dahl-SS and SHR are accompanied by increases in low-M(r) kininogen. Tissue kallikrein gene expression in hypertensive Dahl-SS and SHR and normotensive SD rats is suppressed after salt loading. These findings show that reduced renal kallikrein expression and increased kininogen expression is regulated at the transcriptional level during salt loading.


2018 ◽  
Vol 48 (3) ◽  
pp. 1369-1381 ◽  
Author(s):  
Hong-Bao Li ◽  
Chan-Juan Huo ◽  
Qing Su ◽  
Xiang Li ◽  
Juan Bai ◽  
...  

Background/Aims: Exercise training (ExT) was associated with cardiovascular diseases including hypertension. The rostral ventrolateral medulla (RVLM) is a key region for central control of blood pressure and sympathetic nerve activity. Therefore, this study aimed to investigate the mechanisms within RVLM that can influence exercise training induced effects in salt-induced hypertension. Methods: Male Wistar rats were fed with a normal salt (0.3%) (NS) or a high salt (8%) (HS) diet for 12 weeks to induce hypertension. Then these rats were given moderate-intensity ExT for a period of 12 weeks. RVLM was used to determine glutamate and gamma-aminobutyric acid (HPLC), phosphorylated IKKβ, Fra-LI, 67-kDa isoform of glutamate decarboxylase (GAD67), proinflammatory cytokines (PIC) and NADPH-oxidase (NOX) subunits expression (Immunohistochemistry and Immunofluorescence, Western blotting). PIC and NF-κB p65 activity in the plasma were evaluated by ELISA studies. Renal sympathetic nerve activity (RSNA) was recorded and analyzed using the PowerLab system. Results: High salt diet resulted in increased mean arterial pressure and cardiac hypertrophy. These high salt diet rats had higher RVLM levels of glutamate, PIC, phosphorylated IKKβ, NF-κB p65 activity, Fra-LI, superoxide, NOX-2 (gp91phox) and 4, and lower RVLM levels of gamma-aminobutyric acid and GAD67, and higher plasma levels of PIC, norepinephrine, and higher RSNA. ExT attenuated these changes in salt-induced hypertensive rats. Conclusions: These findings suggest that high salt diet increases the activity of NF-κB and the levels of PIC and oxidative stress, and induces an imbalance between excitatory and inhibitory neurotransmitters in the RVLM. ExT attenuates hypertension and cardiac hypertrophy partially mediated by attenuating oxidative stress and modulating neurotransmitters in the RVLM.


Sign in / Sign up

Export Citation Format

Share Document