scholarly journals Bone Morphogenetic Protein 2 Increases Human Trophoblast Invasion by Up-Regulating Integrin Beta3

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A748
Author(s):  
Cuiping Hu ◽  
Junhao Yan

Abstract The adequate invasion of extravillous trophoblast cells (EVTs) is indispensable for the implantation of embryos and subsequent remodeling of uterine spiral arteries in early human gestation. Bone morphogenetic protein 2 (BMP2), which is abundantly expressed at the maternal-fetal interface, has been shown to promote the human EVT invasion process (1). Integrin switching (i.e., a switch from α6β4 to αvβ3) plays essential roles in cell-extracellular matrix adhesion and has been reported to influence EVT migration and invasion (2). Moreover, integrin β3 has been found to promote the adhesion, invasion, and migration abilities of embryonic trophoblasts (3). However, whether integrin β3 participates in BMP2 signaling and mediates BMP2-increased-human trophoblast invasion remains unknown. The purpose of our study was to explore the effects of BMP2 on integrin αvβ3 expression and the possible mediation role of integrin β3 in BMP2-regulated human trophoblast invasion. We used immortalized human trophoblast cell line (HTR8/SVneo) and primary human extravillous trophoblast cells (EVTs) isolated from first-trimester villi as study models. RT-qPCR and Western blot assay were respectively utilized to detect the messenger RNA and protein levels of intergrin αv and β3. The function of the target protein was studied by siRNA knockdown, and the trophoblast invasion ability was checked by Matrigel-coated transwell invasion assays. Our results demonstrated that the mRNA and protein levels of integrin β3, rather than integrin αv, were up-regulated after BMP2 treatment in HTR8/SVneo and primary EVT cells. Importantly, siRNA-mediated down-regulation of integrin β3 significantly inhibited basal and BMP2-induced HTR8/SVneo cell invasionas measured by transwell invasion assay. In conclusion, we findings support that BMP2 promotes human trophoblast cell invasion by up-regulating integrin β3 expression, benefiting the in-depth understanding of the pro-invasive effect of BMP2 on human trophoblasts during early pregnancy. Reference: (1) Hong-Jin Zhao et al., Cell Death Dis 2018;9:174. (2) Damsky, C.H. et al, Development 1994; 120, 3657-3666. (3) Dong-Mei He et al., Reproduction 2019;157:423-430.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A747
Author(s):  
Jianye Deng ◽  
Yan Li

Abstract TGF-β superfamily proteins play divergent roles in regulating human extravillous trophoblast (EVT) invasion and their coordinated effects are essential for adequate placentation during pregnancy 1. Bone morphogenetic protein 2 (BMP2), which belongs to the BMP subfamily of TGF-β superfamily, has been shown to promote human EVT invasion and the acquisition of endothelial-like phenotype 2,3. It has been reported that BMP2 promotes EVT invasion by up-regulating Activin A, a growth factor which also belongs to TGF-β superfamily. However, whether BMP6 mediates the pro-invasive effect of BMP2 has yet to be determined. Herein, we firstly treated immortalized trophoblast cells (HTR8/SVneo) with recombinant BMP2 protein for 6 and 24 hrs, and our bulk-RNA sequencing results demonstrated significantly increased BMP6 mRNA levels after BMP2 treatment. Furthermore, we confirmed the up-regulatory effects of BMP2 on BMP6 mRNA and protein levels in both HTR8/SVneo and primary EVTs isolated from first-trimester villi. Notably, siRNA-mediated down-regulation of BMP6 significantly attenuated both basal and BMP2-induced cell invasion in HTR8/SVneo cells as measured by Matrigel-coated transwell invasion assay. In summary, our results firstly demonstrated the up-regulatory effect of BMP2 on BMP6 expression in human trophoblasts and identified the mediation role of BMP6 in BMP2-promoted EVT invasion, suggesting the interplay between BMP subfamily members during EVT invasion regulation. Our ongoing research focusing the underlying molecular mechanisms and signaling pathways could further benefit the advancement of diagnostic and therapeutic strategies for EVT invasion dysregulation-related pregnancy disorders, e.g., pre-eclampsia. Reference: (1) Li Yan et al., Trends Endocrinol Metab 2021 18: S1043-2760(20)30266-6. (2) Hong-Jin Zhao et al., FASEB J 2020;34(2):3151-3164. (3) Hong-Jin Zhao et al., Cell Death Dis 2018;9(2):174.


Endocrinology ◽  
2018 ◽  
Vol 159 (7) ◽  
pp. 2815-2825 ◽  
Author(s):  
Hong-Jin Zhao ◽  
Hsun-Ming Chang ◽  
Hua Zhu ◽  
Christian Klausen ◽  
Yan Li ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5596-5605 ◽  
Author(s):  
HaiBin Kuang ◽  
Qi Chen ◽  
Ying Zhang ◽  
Li Zhang ◽  
HongYing Peng ◽  
...  

Abstract Well-controlled trophoblast invasion into uterine decidua is a critical process for the normal development of placenta, which is tightly regulated by various factors produced within the trophoblast-endometrial microenvironment. CXCL14 is involved in tumor growth and metastasis, and its expression in placenta is temporally regulated during pregnancy. However, the role of CXCL14 in trophoblast function during human pregnancy is not clear. In this study, by using RT-PCR through human pregnancy, we found that CXCL14 was selectively expressed at early but not late pregnancy. Immunostaining revealed that CXCL14 proteins were strongly expressed in villous cytotrophoblasts and moderately in decidualized stromal cells but very weakly in syncytiotrophoblasts and extravillous trophoblasts. The effect of CXCL14 on trophoblast invasion were examined by using human villous explants cultured on Matrigel and further proved by invasion and migration assay of primary trophoblast cells and trophoblast cell line HTR-8/SVneo. Our data showed that CXCL14 significantly inhibited outgrowth of villous explant in vitro; this effect is due to suppression of trophoblast invasion and migration through regulating matrix metalloproteinases activities, whereas the trophoblast proliferation was not affected. Moreover, because a receptor for CXCL14 has not been identified, we performed further cell-specific CXCL14 binding activities with regard to different cell types within the maternal-fetal interface. Our data revealed that CXCL14 could specifically bind to trophoblast cells but not decidual cells from the maternal-fetal interface. These results suggest that CXCL14 plays an important role in regulating trophoblast invasion through an autocrine/paracrine manner during early pregnancy.


2020 ◽  
Vol 26 (4) ◽  
pp. 501-513 ◽  
Author(s):  
Yassen Abbas ◽  
Margherita Y Turco ◽  
Graham J Burton ◽  
Ashley Moffett

Abstract BACKGROUND In humans, inadequate trophoblast invasion into the decidua is associated with the ‘great obstetrical syndromes’ which include pre-eclampsia, foetal growth restriction (FGR) and stillbirth. The mechanisms regulating invasion remain poorly understood, although interactions with the uterine environment are clearly of central importance. Extravillous trophoblast (EVT) cells invade the uterus and transform the spiral arteries. Progress in understanding how they invade has been limited due to the lack of good in vitro models. Firstly, there are no non-malignant cell lines that have an EVT phenotype. Secondly, the invasion assays used are of limited use for the small numbers of primary EVT available from first-trimester placentas. We discuss recent progress in this field with the generation of new EVT lines and invasion assays using microfluidic technology. OBJECTIVE AND RATIONALE Our aim is to describe the established models used to study human trophoblast invasion in vivo and in vitro. The difficulties of obtaining primary cells and cell lines that recapitulate the phenotype of EVT are discussed together with the advantages and pitfalls of the different invasion assays. We compare these traditional end point assays to microfluidic assays where the dynamics of migration can be measured. SEARCH METHODS Relevant studies were identified by PubMed search, last updated on February 2020. A search was conducted to determine the number of journal articles published using the cell lines JEG-3, BeWo, JAR, HTR-8/Svneo, Swan-71 and primary human extravillous trophoblast in the last 5 years. OUTCOMES Deep trophoblast invasion into the maternal decidua is a particular feature of human pregnancy. This invasion needs to be finely regulated to allocate resources between mother and baby. A reliable source of EVT is needed to study in vitro how the uterine environment regulates this process. First, we critically discuss the issues with the trophoblast cell lines currently used; for example, most of them lack expression of the defining marker of EVT, HLA-G. Recently, advances in human stem cell and organoid technology have been applied to extraembryonic tissues to develop trophoblast cell lines that can grow in two (2D) and three dimensions (3D) and differentiate to EVT. This means that the ‘trophoblast’ cell lines currently in use should rapidly become obsolete. Second, we critically discuss the problems with assays to study trophoblast invasion. These lack physiological relevance and have simplified migration dynamics. Microfluidic assays are a powerful tool to study cell invasion because they require only a few cells, which are embedded in 3D in an extracellular matrix. Their major advantage is real-time monitoring of cell movement, enabling detailed analysis of the dynamics of trophoblast migration. WIDER IMPLICATIONS Trophoblast invasion in the first trimester of pregnancy remains poorly understood despite the importance of this process in the pathogenesis of pre-eclampsia, FGR, stillbirth and recurrent miscarriage. The new technologies described here will allow investigation into this critical process.


2015 ◽  
Vol 309 (4) ◽  
pp. E357-E369 ◽  
Author(s):  
Vanessa Garnier ◽  
Wael Traboulsi ◽  
Aude Salomon ◽  
Sophie Brouillet ◽  
Thierry Fournier ◽  
...  

PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants ( n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ+/− and PPARγ−/− mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ−/− mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Shiqin Zhu ◽  
Peter C Leung ◽  
Jinlong Ma ◽  
Yan Li

Abstract Activin A Increases Human Trophoblast Invasion by Up-regulating Integrin β1 Through ALK4 Following implantation, extravillous trophoblast cells (EVTs) derived from trophectoderm invade into the maternal decidua to a certain extent, which is tightly regulated by a variety of factors. Activin A, a member of the TGF-β superfamily, has been shown to stimulate the invasion of human trophoblasts (1). Integrin β1 has been implicated in cancer cell invasion and is consistently expressed in human preimplantation embryos (2). However, whether integrin β1 is integrated in activin A signaling and mediates activin A increased-human trophoblast invasion remain unknown. The objective of our study was to investigate the possible mediation role of integrin β1 in the pro-invasive effect of activin A on trophoblasts and illustrate the underlying molecular mechanisms. Primary and immortalized (HTR8/SVneo) cultures of human trophoblast cells were employed as study models. Real-time qPCR, Western blot, and small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions. The integrin β1 protein levels in poorly invasive BeWo,JAR and JEG-3 human choriocarcinoma cells were lower than that in highly invasive HTR8/SVneo cells and primary human EVTs, suggesting the possible essential role of integrin β1 in mediating human trophoblast invasion. The expression levels of integrin β1 were up-regulated in a time-dependent manner after activin A treatment in HTR8/SVneo cells. Importantly, siRNA-mediated down-regulation of integrin β1 significantly attenuated both basal and activin A-induced cell invasion in HTR8/SVneo cells as measured by transwell invasion assay. Interestingly, the TGF-β type I receptors (ALK4/5/7) inhibitor SB431542 abolished activin A-induced activation of SMAD2/SMAD3 as well as activin A-up-regulated integrin 1 expression. Moreover, siRNA-mediated down-regulation of ALK4 or SMAD4 attenuated activin A-up-regulated integrin β1 in both HTR8/SVneo cells and human primary EVT cells. These results reveal that activin A promotes human trophoblast cell invasion by up-regulating integrin β1 expression through ALK4-activated SMAD2/3-SMAD4 signaling pathway. Reference: (1) Bearfield et al., Eur J Endocrinol 2005;152:909–16. (2) Campbell et al., Hum Reprod 1995;10:1571–8.


Sign in / Sign up

Export Citation Format

Share Document