scholarly journals BMP6 Mediates BMP2-Increased Human Trophoblast Invasion

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A747
Author(s):  
Jianye Deng ◽  
Yan Li

Abstract TGF-β superfamily proteins play divergent roles in regulating human extravillous trophoblast (EVT) invasion and their coordinated effects are essential for adequate placentation during pregnancy 1. Bone morphogenetic protein 2 (BMP2), which belongs to the BMP subfamily of TGF-β superfamily, has been shown to promote human EVT invasion and the acquisition of endothelial-like phenotype 2,3. It has been reported that BMP2 promotes EVT invasion by up-regulating Activin A, a growth factor which also belongs to TGF-β superfamily. However, whether BMP6 mediates the pro-invasive effect of BMP2 has yet to be determined. Herein, we firstly treated immortalized trophoblast cells (HTR8/SVneo) with recombinant BMP2 protein for 6 and 24 hrs, and our bulk-RNA sequencing results demonstrated significantly increased BMP6 mRNA levels after BMP2 treatment. Furthermore, we confirmed the up-regulatory effects of BMP2 on BMP6 mRNA and protein levels in both HTR8/SVneo and primary EVTs isolated from first-trimester villi. Notably, siRNA-mediated down-regulation of BMP6 significantly attenuated both basal and BMP2-induced cell invasion in HTR8/SVneo cells as measured by Matrigel-coated transwell invasion assay. In summary, our results firstly demonstrated the up-regulatory effect of BMP2 on BMP6 expression in human trophoblasts and identified the mediation role of BMP6 in BMP2-promoted EVT invasion, suggesting the interplay between BMP subfamily members during EVT invasion regulation. Our ongoing research focusing the underlying molecular mechanisms and signaling pathways could further benefit the advancement of diagnostic and therapeutic strategies for EVT invasion dysregulation-related pregnancy disorders, e.g., pre-eclampsia. Reference: (1) Li Yan et al., Trends Endocrinol Metab 2021 18: S1043-2760(20)30266-6. (2) Hong-Jin Zhao et al., FASEB J 2020;34(2):3151-3164. (3) Hong-Jin Zhao et al., Cell Death Dis 2018;9(2):174.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A748
Author(s):  
Cuiping Hu ◽  
Junhao Yan

Abstract The adequate invasion of extravillous trophoblast cells (EVTs) is indispensable for the implantation of embryos and subsequent remodeling of uterine spiral arteries in early human gestation. Bone morphogenetic protein 2 (BMP2), which is abundantly expressed at the maternal-fetal interface, has been shown to promote the human EVT invasion process (1). Integrin switching (i.e., a switch from α6β4 to αvβ3) plays essential roles in cell-extracellular matrix adhesion and has been reported to influence EVT migration and invasion (2). Moreover, integrin β3 has been found to promote the adhesion, invasion, and migration abilities of embryonic trophoblasts (3). However, whether integrin β3 participates in BMP2 signaling and mediates BMP2-increased-human trophoblast invasion remains unknown. The purpose of our study was to explore the effects of BMP2 on integrin αvβ3 expression and the possible mediation role of integrin β3 in BMP2-regulated human trophoblast invasion. We used immortalized human trophoblast cell line (HTR8/SVneo) and primary human extravillous trophoblast cells (EVTs) isolated from first-trimester villi as study models. RT-qPCR and Western blot assay were respectively utilized to detect the messenger RNA and protein levels of intergrin αv and β3. The function of the target protein was studied by siRNA knockdown, and the trophoblast invasion ability was checked by Matrigel-coated transwell invasion assays. Our results demonstrated that the mRNA and protein levels of integrin β3, rather than integrin αv, were up-regulated after BMP2 treatment in HTR8/SVneo and primary EVT cells. Importantly, siRNA-mediated down-regulation of integrin β3 significantly inhibited basal and BMP2-induced HTR8/SVneo cell invasionas measured by transwell invasion assay. In conclusion, we findings support that BMP2 promotes human trophoblast cell invasion by up-regulating integrin β3 expression, benefiting the in-depth understanding of the pro-invasive effect of BMP2 on human trophoblasts during early pregnancy. Reference: (1) Hong-Jin Zhao et al., Cell Death Dis 2018;9:174. (2) Damsky, C.H. et al, Development 1994; 120, 3657-3666. (3) Dong-Mei He et al., Reproduction 2019;157:423-430.


2010 ◽  
Vol 207 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Delphine Benaitreau ◽  
Esther Dos Santos ◽  
Marie-Christine Leneveu ◽  
Nadia Alfaidy ◽  
Jean-Jacques Feige ◽  
...  

Adiponectin is an adipokine with insulin-sensitizing, anti-inflammatory, anti-atherogenic, and anti-proliferative effects. The expression of specific adiponectin receptors in the placenta and in the endometrium suggests a role for this cytokine in placental development, but this role has not yet been elucidated. The invasion of trophoblast cells during the first trimester of pregnancy being crucial to placentation process, we have studied adiponectin effects on human trophoblast invasive capacities. We found that adiponectin stimulated human trophoblast cell migration in HTR-8/SVneo cells in a dose-independent manner. In addition, adiponectin also significantly enhanced invasion of HTR-8/SVneo cells and of human extravillous trophoblast from first trimester placenta. These pro-invasive effects of adiponectin in human trophoblasts seem to be mediated in part via increased matrix metalloproteinases (MMP2 and MMP9) activities and via repression of TIMP2 mRNA expression. Our results suggest that adiponectin could be a positive regulator of the early invasion process by modulating the MMP/TIMP balance. Moreover, these results provide an insight into the role of adiponectin in pathological conditions characterized by insufficient or excessive trophoblast invasion.


2020 ◽  
Vol 26 (4) ◽  
pp. 501-513 ◽  
Author(s):  
Yassen Abbas ◽  
Margherita Y Turco ◽  
Graham J Burton ◽  
Ashley Moffett

Abstract BACKGROUND In humans, inadequate trophoblast invasion into the decidua is associated with the ‘great obstetrical syndromes’ which include pre-eclampsia, foetal growth restriction (FGR) and stillbirth. The mechanisms regulating invasion remain poorly understood, although interactions with the uterine environment are clearly of central importance. Extravillous trophoblast (EVT) cells invade the uterus and transform the spiral arteries. Progress in understanding how they invade has been limited due to the lack of good in vitro models. Firstly, there are no non-malignant cell lines that have an EVT phenotype. Secondly, the invasion assays used are of limited use for the small numbers of primary EVT available from first-trimester placentas. We discuss recent progress in this field with the generation of new EVT lines and invasion assays using microfluidic technology. OBJECTIVE AND RATIONALE Our aim is to describe the established models used to study human trophoblast invasion in vivo and in vitro. The difficulties of obtaining primary cells and cell lines that recapitulate the phenotype of EVT are discussed together with the advantages and pitfalls of the different invasion assays. We compare these traditional end point assays to microfluidic assays where the dynamics of migration can be measured. SEARCH METHODS Relevant studies were identified by PubMed search, last updated on February 2020. A search was conducted to determine the number of journal articles published using the cell lines JEG-3, BeWo, JAR, HTR-8/Svneo, Swan-71 and primary human extravillous trophoblast in the last 5 years. OUTCOMES Deep trophoblast invasion into the maternal decidua is a particular feature of human pregnancy. This invasion needs to be finely regulated to allocate resources between mother and baby. A reliable source of EVT is needed to study in vitro how the uterine environment regulates this process. First, we critically discuss the issues with the trophoblast cell lines currently used; for example, most of them lack expression of the defining marker of EVT, HLA-G. Recently, advances in human stem cell and organoid technology have been applied to extraembryonic tissues to develop trophoblast cell lines that can grow in two (2D) and three dimensions (3D) and differentiate to EVT. This means that the ‘trophoblast’ cell lines currently in use should rapidly become obsolete. Second, we critically discuss the problems with assays to study trophoblast invasion. These lack physiological relevance and have simplified migration dynamics. Microfluidic assays are a powerful tool to study cell invasion because they require only a few cells, which are embedded in 3D in an extracellular matrix. Their major advantage is real-time monitoring of cell movement, enabling detailed analysis of the dynamics of trophoblast migration. WIDER IMPLICATIONS Trophoblast invasion in the first trimester of pregnancy remains poorly understood despite the importance of this process in the pathogenesis of pre-eclampsia, FGR, stillbirth and recurrent miscarriage. The new technologies described here will allow investigation into this critical process.


2015 ◽  
Vol 100 (11) ◽  
pp. E1415-E1427 ◽  
Author(s):  
Yan Li ◽  
Christian Klausen ◽  
Hua Zhu ◽  
Peter C. K. Leung

Context: Activin A increases matrix metalloproteinase (MMP) 2 expression and cell invasion in human trophoblasts, but whether the expression of MMP2 is essential for the proinvasive effect of activin A has yet to be determined. Moreover, the identity of the activin receptor-like kinase (ALK; TGF-β type I receptors) and downstream transcription factors (eg, SNAIL and SLUG) mediating the effects of activin on MMP2 expression and trophoblast cell invasion remains unknown. Objective: To elucidate the role of MMP2 in activin A-induced human trophoblast cell invasion as well as the involvement of ALK4 and SNAIL. Design: HTR8/SVneo immortalized human extravillous cytotrophoblast (EVT) cells and primary cultures of human first-trimester EVT cells were used as study models. Small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions. Main Outcome Measures: Levels of mRNA and protein were examined by reverse transcription-quantitative real-time PCR and Western blot, respectively. Cell invasiveness was measured by Matrigel-coated transwell assays. Results: Treatment of HTR8/SVneo cells with activin A increased the production of SNAIL, SLUG, and MMP2 without altering that of MMP9, TIMP1, TIMP2, TWIST, RUNX2, ZEB1, or ZEB2. Similarly, activin A up-regulated the mRNA and protein levels of SNAIL and MMP2 in primary EVT cells. Knockdown of SNAIL attenuated activin A-induced MMP2 up-regulation in HTR8/SVneo and primary EVT cells. In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pretreatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3, or common SMAD4. Likewise, knockdown of ALK4 or SMAD4 abolished the stimulatory effects of activin A on SNAIL and MMP2 expression in primary EVT cells. Importantly, activin A-induced HTR8/SVneo and primary EVT cell invasion were attenuated by siRNA-mediated depletion of ALK4 or MMP2. Conclusion: Activin A induces human trophoblast cell invasion by inducing SNAIL-mediated MMP2 expression through ALK4 in a SMAD2/3-SMAD4-dependent manner.


2020 ◽  
Author(s):  
Shingo Io ◽  
Mio Kabata ◽  
Yoshiki Iemura ◽  
Katsunori Semi ◽  
Nobuhiro Morone ◽  
...  

AbstractTrophoblast are extra-embryonic cells that are essential to maintain pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblast (CT), syncytiotrophoblast (ST), and extravillous trophoblast (EVT) composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naïve PSC-derived TE and CT (nCT) recreated the human and monkey TE-to-CT transition. nCT self-renewed as CT stem cells and had the characteristics of proliferating villous CT and CT in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (pBAP), pBAP were distinct from nCT and human placenta-derived CT stem cells, exhibiting properties consistent of the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naïve human PSCs. Our system will provide a platform to study the molecular mechanisms underlying trophoblast development and related diseases.


2020 ◽  
Author(s):  
Jing Sun ◽  
wugui chen ◽  
Songtao Li ◽  
Sizhen Yang ◽  
Ying Zhang ◽  
...  

Abstract Background: Receptor activator of nuclear factor-κB ligand (RANKL) has been found to induce osteoclastogenesis and bone resorption. However, the underlying molecular mechanisms remain unclear. Methods: Osteoclastogenesis was evaluated by number of TRAP-positive multinuclear (≥3) osteoclasts, bone resorption pits and expression levels of related genes. Autophagy activity were evaluated by LC3-II/LC3-I ratio, number of autophagic vacuoles and adenovirus-mRFP-GFP-tagged LC3 reporting system; Inhibitor chloroquine (CQ) was used to verified the role of autophagy in RANKL-induced osteoclastogenesis; Via downregulating Nox4 with inhibitor (DPI) and retrovirus-conveyed shRNA, we further explored the importance of Nox4 in RANKL-induced autophagy and osteoclastogenesis, as well as the regulatory effects of Nox4 on nonmitochondrial reactive oxygen species (ROS) and PERK/eIF-2α/ATF4 pathway. Intracellular ROS scavenger (NAC), mitochondrial-targeted antioxidant (MitoTEMPO) and inhibitor of PERK (GSK2606414) were also employed to investigate the role of ROS and PERK/eIF-2α/ATF4 pathway in RANKL-induced autophagy and osteoclastogenesis. Results: RANKL markedly increased autophagy, while CQ treatment caused reduction of RANKL-induced autophagy and osteoclastogenesis. Consistent with the increased autophagy, the protein levels of Nox4 were significantly increased, and Nox4 was selectively localized within the endoplasmic reticulum (ER) after RANKL stimulation. DPI and shRNA efficiently decreased the protein level and (or) activity of Nox4 in the ER and inhibited RANKL-induced autophagy and osteoclastogenesis. Mechanistically, we found that Nox4 regulates RANKL-induced autophagy activation and osteoclastogenesis by stimulating the production of nonmitochondrial ROS. Additionally, Nox4-derived nonmitochondrial ROS dramatically activate PERK/eIF-2α/ATF4, which is a critical unfolded protein response (UPR)-related signaling pathway during ER stress. Blocking the activation of the PERK/eIF-2α/ATF4 signaling pathway either by Nox4 shRNA, ROS antioxidant or PERK inhibitor (GSK2606414) treatment significantly inhibited endoplasmic reticulum autophagy (ER-phagy) during RANKL-induced osteoclastogenesis. Conclusions: Our findings provide new insights into the processes of RANKL-induced osteoclastogenesis and will help the development of new therapeutic strategies for osteoclastogenesis-related diseases.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 59-71
Author(s):  
Wen-Wen Gu ◽  
Long Yang ◽  
Xing-Xing Zhen ◽  
Yan Gu ◽  
Hua Xu ◽  
...  

The invasion of maternal decidua by extravillous trophoblast (EVT) is essential for the establishment and maintenance of pregnancy, and abnormal trophoblast invasion could lead to placenta-associated pathologies including early pregnancy loss and preeclampsia. SEC5, a component of the exocyst complex, plays important roles in cell survival and migration, but its role in early pregnancy has not been reported. Thus, the present study was performed to explore the functions of SEC5 in trophoblast cells. The results showed that SEC5 expression in human placental villi at first trimester was significantly higher than it was at the third trimester, and it was abundantly localized in the cytotrophoblast (CTB) and the trophoblastic column. SEC5 knockdown was accompanied by reduced migration and invasion in HTR-8/SVneo cells. In addition, the expression and plasma membrane distribution of integrin β1 was also decreased. Furthermore, shRNA-mediated knockdown of SEC5 inhibited the outgrowth of first trimester placental explants. SEC5 and InsP3R were colocalized in the cytoplasm of HTR-8/SVneo cells, and the cell-permeant calcium chelator BAPTA-AM could significantly inhibit HTR-8/SVneo cell invasion. The Ca2+ imaging results showed that the 10% fetal bovine serum-stimulated cytosolic calcium concentration ([Ca2+]c) was not only reduced by downregulated SEC5 but also was blocked by the InsP3R inhibitor. Furthermore, either the [Ca2+]c was buffered by BAPTA-AM or the knockdown of SEC5 disrupted HTR-8/SVneo cell F-actin stress fibers and caused cytoskeleton derangement. Taken together, our results suggest that SEC5 might be involved in regulating trophoblast cell migration and invasion through the integrin/Ca2+ signal pathway to induce cytoskeletal rearrangement.


2005 ◽  
Vol 17 (9) ◽  
pp. 78
Author(s):  
N. J. Hannan ◽  
R. L. Jones ◽  
L. A. Salamonsen

Human embryo implantation is a complex process requiring the attachment of an activated blastocyst to receptive endometrial epithelium and subsequent trophoblast invasion throughout the first trimester of pregnancy. Chemokines, including fractalkine (FKN), MCP-3, HCC-1 and MIP-1β, are produced by human endometrial epithelial and decidual cells with maximal production around the time of implantation/early pregnancy.1,2 Chemokine and receptor expression was characterized in cell types at the human maternal–trophoblast interface. Highly abundant expression of chemokine receptors CX3CR1 and CCR1 was observed in first trimester placenta and in trophoblast cells.3 We hypothesized that CX3CR1 and CCR1 ligands (FKN, MCP-3, HCC-1 and MIP-1β) produced by endometrial epithelial and decidualised stromal cells at the time of implantation promote migration of human trophoblast. We aimed to localize specific chemokine receptors in human first trimester tissue, and to determine whether trophoblast migration could be stimulated by the endometrium and by chemokines. Cellular localisation of specific receptors was assessed by immunohistochemistry in human first trimester implantation sites. Using an in vitro assay, trophoblast migration was assessed in response to human endometrial epithelial (HEEC) and decidualised stromal cells (DESC) (serum-free) conditioned medium and to recombinant human FKN, MCP-3, HCC-1 and MIP-1β. CX3CR1 and CCR1 protein was localised to the vascular extravillous trophoblast (EVTs), but not to the invading interstitial EVTs, with weak staining on the syncytium. Significant migration of cells occurred in response to conditioned media from HEEC and DESC. FKN, MIP-1β and HCC-1, but not MCP-3 also promoted significant trophoblast migration. Neutralizing antibodies for FKN and MIP-1β but not MCP-3 significantly reduced migration to conditioned media, indicating that at least these two chemokines contributed to the effects. These data support a role for endometrial derived chemokines in promoting human trophoblast migration. (1)Jones et al. (2004). JCEM 89(12), 6155–6167.(2)Hannan et al. (2004). Reprod. Fert. Devel. 16(Suppl.), A225, p. 78.(3)Hannan et al. (2004). JCEM 89(12), 6119–6129.


Sign in / Sign up

Export Citation Format

Share Document