scholarly journals Disruption of a Receptor-Mediated Mechanism for Intracellular Sorting of Proinsulin in Familial Hyperproinsulinemia

2003 ◽  
Vol 17 (9) ◽  
pp. 1856-1867 ◽  
Author(s):  
Savita Dhanvantari ◽  
Fu-Sheng Shen ◽  
Tiffany Adams ◽  
Christopher R. Snell ◽  
ChunFa Zhang ◽  
...  

Abstract In familial hyperproinsulinemia, specific mutations in the proinsulin gene are linked with a profound increase in circulating plasma proinsulin levels. However, the molecular and cellular basis for this disease remains uncharacterized. Here we investigated how these mutations may disrupt the sorting signal required to target proinsulin to the secretory granules of the regulated secretory pathway, resulting in the unregulated release of proinsulin. Using a combination of molecular modeling and site-directed mutagenesis, we have identified structural molecular motifs in proinsulin that are necessary for correct sorting into secretory granules of endocrine cells. We show that membrane carboxypeptidase E (CPE), previously identified as a prohormone-sorting receptor, is essential for proinsulin sorting. This was demonstrated through short interfering RNA-mediated depletion of CPE and transfection with a dominant negative mutant of CPE in a β-cell line. Mutant proinsulins found in familial hyperproinsulinemia failed to bind to CPE and were not sorted efficiently. These findings provide evidence that the elevation of plasma proinsulin levels found in patients with familial hyperproinsulinemia is caused by the disruption of CPE-mediated sorting of mutant proinsulins to the regulated secretory pathway.

2001 ◽  
Vol 360 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Renu K. JAIN ◽  
Paul B. M. JOYCE ◽  
Miguel MOLINETE ◽  
Philippe A. HALBAN ◽  
Sven-Ulrik GORR

Green fluorescent protein (GFP) is used extensively as a reporter protein to monitor cellular processes, including intracellular protein trafficking and secretion. In general, this approach depends on GFP acting as a passive reporter protein. However, it was recently noted that GFP oligomerizes in the secretory pathway of endocrine cells. To characterize this oligomerization and its potential role in GFP transport, cytosolic and secretory forms of enhanced GFP (EGFP) were expressed in GH4C1 and AtT-20 endocrine cells. Biochemical analysis showed that cytosolic EGFP existed as a 27kDa monomer, whereas secretory forms of EGFP formed disulphide-linked oligomers. EGFP contains two cysteine residues (Cys49 and Cys71), which could play a role in this oligomerization. Site-directed mutagenesis of Cys49 and Cys71 showed that both cysteine residues were involved in disulphide interactions. Substitution of either cysteine residue resulted in a reduction or loss of oligomers, although dimers of the secretory form of EGFP remained. Mutation of these residues did not adversely affect the fluorescence of EGFP. EGFP oligomers were stored in secretory granules and secreted by the regulated secretory pathway in endocrine AtT-20 cells. Similarly, the dimeric mutant forms of EGFP were still secreted via the regulated secretory pathway, indicating that the higher-order oligomers were not necessary for sorting in AtT-20 cells. These results suggest that the oligomerization of EGFP must be considered when the protein is used as a reporter molecule in the secretory pathway.


1985 ◽  
Vol 101 (2) ◽  
pp. 639-645 ◽  
Author(s):  
T L Burgess ◽  
C S Craik ◽  
R B Kelly

The exocrine protein rat anionic trypsinogen has been expressed and is secreted from the murine anterior pituitary tumor cell line AtT-20. We examined which secretory pathway trypsinogen takes to the surface of this endocrine-derived cell line. The "constitutive" pathway externalizes proteins rapidly and in the absence of an external stimulus. In the alternate, "regulated" pathway, proteins are stored in secretory granules until the cells are stimulated to secrete with 8-Br-cAMP. On the basis of indirect immunofluorescence localization, stimulation of release, and subcellular fractionation, we find that trypsinogen is targeted into the regulated secretory pathway in AtT-20 cells. In contrast, laminin, an endogenous secretory glycoprotein, is shown to be secreted constitutively. Thus it appears that the transport apparatus for the regulated secretory pathway in endocrine cells can recognize not only endocrine prohormones, but also the exocrine protein trypsinogen, which suggests that a similar sorting mechanism is used by endocrine and exocrine cells.


2009 ◽  
Vol 418 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Hansruedi Stettler ◽  
Nicole Beuret ◽  
Cristina Prescianotto-Baschong ◽  
Bérengère Fayard ◽  
Laurent Taupenot ◽  
...  

In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.


2008 ◽  
Vol 19 (12) ◽  
pp. 5072-5081 ◽  
Author(s):  
Winnie W.Y. Lui-Roberts ◽  
Francesco Ferraro ◽  
Thomas D. Nightingale ◽  
Daniel F. Cutler

Formation of secretory organelles requires the coupling of cargo selection to targeting into the correct exocytic pathway. Although the assembly of regulated secretory granules is driven in part by selective aggregation and retention of content, we recently reported that adaptor protein-1 (AP-1) recruitment of clathrin is essential to the initial formation of Weibel-Palade bodies (WPBs) at the trans-Golgi network. A selective co-aggregation process might include recruitment of components required for targeting to the regulated secretory pathway. However, we find that acquisition of the regulated secretory phenotype by WPBs in endothelial cells is coupled to but can be separated from formation of the distinctive granule core by ablation of the AP-1 effectors aftiphilin and γ-synergin. Their depletion by small interfering RNA leads to WPBs that fail to respond to secretagogue and release their content in an unregulated manner. We find that these non-responsive WPBs have density, markers of maturation, and highly multimerized von Willebrand factor similar to those of wild-type granules. Thus, by also recruiting aftiphilin/γ-synergin in addition to clathrin, AP-1 coordinates formation of WPBs with their acquisition of a regulated secretory phenotype.


1998 ◽  
Vol 332 (3) ◽  
pp. 593-610 ◽  
Author(s):  
Peter ARVAN ◽  
David CASTLE

Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.


2018 ◽  
Author(s):  
Brennan S. Dirk ◽  
Christopher End ◽  
Emily N. Pawlak ◽  
Logan R. Van Nynatten ◽  
Rajesh Abraham Jacob ◽  
...  

ABSTRACTThe regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein – 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.


1987 ◽  
Vol 105 (2) ◽  
pp. 659-668 ◽  
Author(s):  
T L Burgess ◽  
C S Craik ◽  
L Matsuuchi ◽  
R B Kelly

The mouse anterior pituitary tumor cell line, AtT-20, targets secretory proteins into two distinct intracellular pathways. When the DNA that encodes trypsinogen is introduced into AtT-20 cells, the protein is sorted into the regulated secretory pathway as efficiently as the endogenous peptide hormone ACTH. In this study we have used double-label immunoelectron microscopy to demonstrate that trypsinogen colocalizes in the same secretory granules as ACTH. In vitro mutagenesis was used to test whether the information for targeting trypsinogen to the secretory granules resides at the amino (NH2) terminus of the protein. Mutations were made in the DNA that encodes trypsinogen, and the mutant proteins were expressed in AtT-20 cells to determine whether intracellular targeting could be altered. Replacing the trypsinogen signal peptide with that of the kappa-immunoglobulin light chain, a constitutively secreted protein, does not alter targeting to the regulated secretory pathway. In addition, deletion of the NH2-terminal "pro" sequence of trypsinogen has virtually no effect on protein targeting. However, this deletion does affect the signal peptidase cleavage site, and as a result the enzymatic activity of the truncated trypsin protein is abolished. We conclude that neither the signal peptide nor the 12 NH2-terminal amino acids of trypsinogen are essential for sorting to the regulated secretory pathway of AtT-20 cells.


2013 ◽  
Vol 217 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Rebecca McGirr ◽  
Leonardo Guizzetti ◽  
Savita Dhanvantari

Proglucagon is expressed in pancreatic alpha cells, intestinal L cells and brainstem neurons. Tissue-specific processing of proglucagon yields the peptide hormones glucagon in the alpha cell and glucagon-like peptide (GLP)-1 and GLP-2 in L cells. Both glucagon and GLP-1 are secreted in response to nutritional status and are critical for regulating glycaemia. The sorting of proglucagon to the dense-core secretory granules of the regulated secretory pathway is essential for the appropriate secretion of glucagon and GLP-1. We examined the roles of carboxypeptidase E (CPE), a prohormone sorting receptor, the processing enzymes PC1/3 and PC2 and putative intrinsic sorting signals in proglucagon sorting. In Neuro 2a cells that lacked CPE, PC1/3 and PC2, proglucagon co-localised with the Golgi marker p115 as determined by quantitative immunofluorescence microscopy. Expression of CPE, but not of PC1/3 or PC2, enhanced proglucagon sorting to granules. siRNA-mediated knockdown of CPE disrupted regulated secretion of glucagon from pancreatic-derived alphaTC1–6 cells, but not of GLP-1 from intestinal cell-derived GLUTag cells. Mutation of the PC cleavage site K70R71, the dibasic R17R18 site within glucagon or the alpha-helix of glucagon, all significantly affected the sub-cellular localisation of proglucagon. Protein modelling revealed that alpha helices corresponding to glucagon, GLP-1 and GLP-2, are arranged within a disordered structure, suggesting some flexibility in the sorting mechanism. We conclude that there are multiple mechanisms for sorting proglucagon to the regulated secretory pathway, including a role for CPE in pancreatic alpha cells, initial cleavage at K70R71 and multiple sorting signals.


1996 ◽  
Vol 135 (5) ◽  
pp. 1261-1275 ◽  
Author(s):  
I De Bie ◽  
M Marcinkiewicz ◽  
D Malide ◽  
C Lazure ◽  
K Nakayama ◽  
...  

The proprotein convertase PC5 is encoded by multiple mRNAs, two of which give rise to the COOH-terminal variant isoforms PC5-A (915 amino acids [aa]) and PC5-B (1877 aa). To investigate the differences in biosynthesis and sorting between these two proteins, we generated stably transfected AtT-20 cell lines expressing each enzyme individually and examined their respective processing pattern and subcellular localization. Biosynthetic analyses coupled to immunofluorescence studies demonstrated that the shorter and soluble PC5-A is sorted to regulated secretory granules. In contrast, the COOH-terminally extended and membrane-bound PC5-B is located in the Golgi. The presence of a sorting signal in the COOH-terminal 38 amino acids unique to PC5-A was demonstrated by the inefficient entry into the regulated secretory pathway of a mutant lacking this segment. EM of pancreatic cells established the presence of immunoreactive PC5 in glucagon-containing granules, demonstrating the sorting of this protein to dense core secretory granules in endocrine cells. Thus, a single PC5 gene generates COOH-terminally modified isoforms with different sorting signals directing these proteins to distinct subcellular localization, thereby allowing them to process their appropriate substrates.


Sign in / Sign up

Export Citation Format

Share Document