covalent histone modifications
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Author(s):  
William M Yashar ◽  
Garth Kong ◽  
Jake VanCampen ◽  
Brittany M Smith ◽  
Daniel J Coleman ◽  
...  

Genome-wide mapping of the histone modification landscape is critical to understanding tran-scriptional regulation. Cleavage Under Targets and Tagmentation (CUT&Tag) is a new method for profiling the localization of covalent histone modifications, offering improved sensitivity and decreased cost compared with Chromatin Immunoprecipitation Sequencing (ChIP-seq). Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. GoPeaks implements a Binomial distribution and stringent read count cut-off to nominate candidate genomic regions. We compared the performance of GoPeaks against com-monly used peak calling algorithms to detect H3K4me3, H3K4me1, and H3K27Ac peaks from CUT&Tag data. These histone modifications display a range of peak profiles and are frequently used in epigenetic studies. We found GoPeaks robustly detects genome-wide histone modifica-tions and, notably, identifies H3K27Ac with improved sensitivity compared to other standard peak calling algorithms.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4084
Author(s):  
Oliver J. Pickering ◽  
Stella P. Breininger ◽  
Timothy J. Underwood ◽  
Zoë S. Walters

Oesophageal adenocarcinoma (OAC) has a dismal prognosis, where curable disease occurs in less than 40% of patients, and many of those with incurable disease survive for less than a year from diagnosis. Despite the widespread use of systematic chemotherapy in OAC treatment, many patients receive no benefit. New treatments are urgently needed for OAC patients. There is an emerging interest in epigenetic regulators in cancer pathogenesis, which are now translating into novel cancer therapeutic strategies. Histone-modifying enzymes (HMEs) are key epigenetic regulators responsible for dynamic covalent histone modifications that play roles in both normal and dysregulated cellular processes including tumorigenesis. Several HME inhibitors are in clinical use for haematological malignancies and sarcomas, with numerous on-going clinical trials for their use in solid tumours. This review discusses the current literature surrounding HMEs in OAC pathogenesis and their potential use in targeted therapies for this disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhuo Sun ◽  
Jinbo Fan ◽  
Yufeng Zhao

During X chromosome inactivation, many chromatin changes occur on the future inactive X chromosome, including acquisition of a variety of repressive covalent histone modifications, heterochromatin protein associations, and DNA methylation of promoters. Here, we summarize trans-acting factors and cis elements that have been shown to be involved in the human inactive X chromosome organization and compaction.


Epigenomes ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Wiesława Leśniak

The epidermis is the outer part of the skin that protects the organism from dehydration and shields from external insults. Epidermal cells, called keratinocytes, undergo a series of morphological and metabolic changes that allow them to establish the biochemical and structural elements of an effective epidermal barrier. This process, known as epidermal differentiation, is critical for the maintenance of the epidermis under physiological conditions and also under stress or in various skin pathologies. Epidermal differentiation relies on a highly coordinated program of gene expression. Epigenetic mechanisms, which commonly include DNA methylation, covalent histone modifications, and microRNA (miRNA) activity, modulate various stages of gene expression by altering chromatin accessibility and mRNA stability. Their involvement in epidermal differentiation is a matter of intensive studies, and the results obtained thus far show a complex network of epigenetic factors, acting together with transcriptional regulators, to maintain epidermal homeostasis and counteract adverse effects of environmental stressors.


2020 ◽  
Vol 21 (14) ◽  
pp. 5125
Author(s):  
Agnieszka Ostrowska-Mazurek ◽  
Piotr Kasprzak ◽  
Szymon Kubala ◽  
Magdalena Zaborowska ◽  
Ewa Sobieszczuk-Nowicka

This review synthesizes knowledge on epigenetic regulation of leaf senescence and discusses the possibility of using this knowledge to improve crop quality. This control level is implemented by different but interacting epigenetic mechanisms, including DNA methylation, covalent histone modifications, and non-covalent chromatin remodeling. The genetic and epigenetic changes may act alone or together and regulate the gene expression, which may result in heritable (stress memory) changes and may lead to crop survival. In the review, the question also arises whether the mitotically stable epigenetic information can be used for crop improvement. The barley crop model for early and late events of dark-induced leaf senescence (DILS), where the point of no return was defined, revealed differences in DNA and RNA modifications active in DILS compared to developmental leaf senescence. This suggests the possibility of a yet-to-be-discovered epigenetic-based switch between cell survival and cell death. Conclusions from the analyzed research contributed to the hypothesis that chromatin-remodeling mechanisms play a role in the control of induced leaf senescence. Understanding this mechanism in crops might provide a tool for further exploitation toward sustainable agriculture: so-called epibreeding.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 999 ◽  
Author(s):  
Sabina Farhadova ◽  
Melisa Gomez-Velazquez ◽  
Robert Feil

DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.


Acta Naturae ◽  
2013 ◽  
Vol 5 (4) ◽  
pp. 15-21 ◽  
Author(s):  
E. A. Vaskova ◽  
A. E. Stekleneva ◽  
S. P. Medvedev ◽  
S. M. Zakian

To date biomedicine and pharmacology have required generating new and more consummate models. One of the most perspective trends in this field is using induced pluripotent stem cells (iPSCs). iPSC application requires careful high-throughput analysis at the molecular, epigenetic, and functional levels. The methods used have revealed that the expression pattern of genes and microRNA, DNA methylation, as well as the set and pattern of covalent histone modifications in iPSCs, are very similar to those in embryonic stem cells. Nevertheless, iPSCs have been shown to possess some specific features that can be acquired during the reprogramming process or are remnants of epigenomes and transcriptomes of the donor tissue. These residual signatures of epigenomes and transcriptomes of the somatic tissue of origin were termed epigenetic memory. In this review, we discuss the epigenetic memory phenomenon in the context of the reprogramming process, its influence on iPSC properties, and the possibilities of its application in cell technologies.


Sign in / Sign up

Export Citation Format

Share Document