scholarly journals Functional Studies of Akt Isoform Specificity in Skeletal Muscle in Vivo; Maintained Insulin Sensitivity Despite Reduced Insulin Receptor Substrate-1 Expression

2007 ◽  
Vol 21 (1) ◽  
pp. 215-228 ◽  
Author(s):  
Mark E. Cleasby ◽  
Tracie A. Reinten ◽  
Gregory J. Cooney ◽  
David E. James ◽  
Edward W. Kraegen

Abstract The phosphoinositide 3-kinase/Akt pathway is thought to be essential for normal insulin action and glucose metabolism in skeletal muscle and has been shown to be dysregulated in insulin resistance. However, the specific roles of and signaling pathways triggered by Akt isoforms have not been fully assessed in muscle in vivo. We overexpressed constitutively active (ca-) Akt-1 or Akt-2 constructs in muscle using in vivo electrotransfer and, after 1 wk, assessed the roles of each isoform on glucose metabolism and fiber growth. We achieved greater than 2.5-fold increases in total Ser473 phosphorylation in muscles expressing ca-Akt-1 and ca-Akt-2, respectively. Both isoforms caused hypertrophy of muscle fibers, consistent with increases in p70S6kinase phosphorylation, and a 60% increase in glycogen accumulation, although only Akt-1 increased glycogen synthase kinase-3β phosphorylation. Akt-2, but not Akt-1, increased basal glucose uptake (by 33%, P = 0.004) and incorporation into glycogen and lipids, suggesting a specific effect on glucose transport. Consistent with this, short hairpin RNA-mediated silencing of Akt-2 caused reductions in glycogen storage and glucose uptake. Consistent with Akt-mediated insulin receptor substrate 1 (IRS-1) degradation, we observed approximately 30% reductions in IRS-1 protein in muscle overexpressing ca-Akt-1 or ca-Akt-2. Despite this, we observed no decrease in insulin-stimulated glucose uptake. Furthermore, a 68% reduction in IRS-1 levels induced using short hairpin RNAs targeting IRS-1 also did not affect glucose disposal after a glucose load. These data indicate distinct roles for Akt-1 and Akt-2 in muscle glucose metabolism and that moderate reductions in IRS-1 expression do not result in the development of insulin resistance in skeletal muscle in vivo.

2000 ◽  
Vol 85 (5) ◽  
pp. 2004-2013
Author(s):  
Marta Letizia Hribal ◽  
Massimo Federici ◽  
Ottavia Porzio ◽  
Davide Lauro ◽  
Patrizia Borboni ◽  
...  

2005 ◽  
Vol 288 (6) ◽  
pp. C1317-C1331 ◽  
Author(s):  
Franco Capozza ◽  
Terry P. Combs ◽  
Alex W. Cohen ◽  
You-Ree Cho ◽  
So-Young Park ◽  
...  

Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis. At age 2 mo, Cav-3 null mice are significantly larger than wild-type mice, and display significant postprandial hyperinsulinemia, whole body insulin resistance, and whole body glucose intolerance. Studies using hyperinsulinemic-euglycemic clamps revealed that Cav-3 null mice exhibited 20% and 40% decreases in insulin-stimulated whole body glucose uptake and whole body glycogen synthesis, respectively. Whole body insulin resistance was mostly attributed to 20% and 40% decreases in insulin-stimulated glucose uptake and glucose metabolic flux in the skeletal muscle of Cav-3 null mice. In addition, insulin-mediated suppression of hepatic glucose production was significantly reduced in Cav-3 null mice, indicating hepatic insulin resistance. Insulin-stimulated glucose uptake in white adipose tissue, which does not express Cav-3, was decreased by ∼70% in Cav-3 null mice, suggestive of an insulin-resistant state for this tissue. During fasting, Cav-3 null mice possess normal insulin receptor protein levels in their skeletal muscle. However, after 15 min of acute insulin stimulation, Cav-3 null mice show dramatically reduced levels of the insulin receptor protein, compared with wild-type mice treated identically. These results suggest that Cav-3 normally functions to increase the stability of the insulin receptor at the plasma membrane, preventing its rapid degradation, i.e., by blocking or slowing ligand-induced receptor downregulation. Thus our results demonstrate the importance of Cav-3 in regulating whole body glucose homeostasis in vivo and its possible role in the development of insulin resistance. These findings may have clinical implications for the early diagnosis and treatment of caveolinopathies.


Sign in / Sign up

Export Citation Format

Share Document