scholarly journals Large graph limit for an SIR process in random network with heterogeneous connectivity

2012 ◽  
Vol 22 (2) ◽  
pp. 541-575 ◽  
Author(s):  
Laurent Decreusefond ◽  
Jean-Stéphane Dhersin ◽  
Pascal Moyal ◽  
Viet Chi Tran
2018 ◽  
Vol 12 (1) ◽  
pp. 746-788 ◽  
Author(s):  
Karly A. Jacobsen ◽  
Mark G. Burch ◽  
Joseph H. Tien ◽  
Grzegorz A. Rempała

Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1716
Author(s):  
Adrian Marius Deaconu ◽  
Delia Spridon

Algorithms for network flow problems, such as maximum flow, minimum cost flow, and multi-commodity flow problems, are continuously developed and improved, and so, random network generators become indispensable to simulate the functionality and to test the correctness and the execution speed of these algorithms. For this purpose, in this paper, the well-known Erdős–Rényi model is adapted to generate random flow (transportation) networks. The developed algorithm is fast and based on the natural property of the flow that can be decomposed into directed elementary s-t paths and cycles. So, the proposed algorithm can be used to quickly build a vast number of networks as well as large-scale networks especially designed for s-t flows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marios Papachristou

AbstractIn this paper we devise a generative random network model with core–periphery properties whose core nodes act as sublinear dominators, that is, if the network has n nodes, the core has size o(n) and dominates the entire network. We show that instances generated by this model exhibit power law degree distributions, and incorporates small-world phenomena. We also fit our model in a variety of real-world networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luca Gamberi ◽  
Yanik-Pascal Förster ◽  
Evan Tzanis ◽  
Alessia Annibale ◽  
Pierpaolo Vivo

AbstractAn important question in representative democracies is how to determine the optimal parliament size of a given country. According to an old conjecture, known as the cubic root law, there is a fairly universal power-law relation, with an exponent equal to 1/3, between the size of an elected parliament and the country’s population. Empirical data in modern European countries support such universality but are consistent with a larger exponent. In this work, we analyse this intriguing regularity using tools from complex networks theory. We model the population of a democratic country as a random network, drawn from a growth model, where each node is assigned a constituency membership sampled from an available set of size D. We calculate analytically the modularity of the population and find that its functional relation with the number of constituencies is strongly non-monotonic, exhibiting a maximum that depends on the population size. The criterion of maximal modularity allows us to predict that the number of representatives should scale as a power-law in the size of the population, a finding that is qualitatively confirmed by the empirical analysis of real-world data.


Sign in / Sign up

Export Citation Format

Share Document