scholarly journals Hypocoercivity of piecewise deterministic Markov process-Monte Carlo

2021 ◽  
Vol 31 (5) ◽  
Author(s):  
Christophe Andrieu ◽  
Alain Durmus ◽  
Nikolas Nüsken ◽  
Julien Roussel
2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Joris Bierkens ◽  
Sebastiano Grazzi ◽  
Frank van der Meulen ◽  
Moritz Schauer

AbstractWe introduce the use of the Zig-Zag sampler to the problem of sampling conditional diffusion processes (diffusion bridges). The Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov process. Similar to the Lévy–Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated Faber–Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of the fully local algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance of the proposed methods in a number of examples.


1988 ◽  
Vol 55 (4) ◽  
pp. 911-917 ◽  
Author(s):  
L. G. Paparizos ◽  
W. D. Iwan

The nature of the response of strongly yielding systems subjected to random excitation, is examined. Special attention is given to the drift response, defined as the sum of yield increments associated with inelastic response. Based on the properties of discrete Markov process models of the yield increment process, it is suggested that for many cases of practical interest, the drift can be considered as a Brownian motion. The approximate Gaussian distribution and the linearly divergent mean square value of the process, as well as an expression for the probability distribution of the peak drift response, are obtained. The validation of these properties is accomplished by means of a Monte Carlo simulation study.


2012 ◽  
Vol 44 (3) ◽  
pp. 749-773 ◽  
Author(s):  
Alexandre Genadot ◽  
Michèle Thieullen

In this paper we consider the generalized Hodgkin-Huxley model introduced in Austin (2008). This model describes the propagation of an action potential along the axon of a neuron at the scale of ion channels. Mathematically, this model is a fully coupled piecewise-deterministic Markov process (PDMP) in infinite dimensions. We introduce two time scales in this model in considering that some ion channels open and close at faster jump rates than others. We perform a slow-fast analysis of this model and prove that, asymptotically, this ‘two-time-scale’ model reduces to the so-called averaged model, which is still a PDMP in infinite dimensions, for which we provide effective evolution equations and jump rates.


Author(s):  
Qun Liu ◽  
Daqing Jiang

In this paper, we are concerned with the global dynamical behavior of a multigroup SVIR epidemic model, which is formulated as a piecewise-deterministic Markov process. We first obtain sufficient criteria for extinction of the diseases. Then we establish sufficient criteria for persistence in the mean of the diseases. Moreover, in the case of persistence, we find a domain which is positive recurrence for the solution of the stochastic system by constructing an appropriate Lyapunov function with regime switching.


Sign in / Sign up

Export Citation Format

Share Document